Criteria

Text:
Display:

Results

Viewing 1 to 30 of 514
2017-10-08
Technical Paper
2017-01-2288
Tianyuan Zhou, Changsheng Yao, Fuyuan Yang, Sun Jinwei
Low temperature combustion (LTC) is an advanced combustion mode, which can achieve low emissions of NOx and PM simultaneously, and keep relatively high thermal efficiency at the same time. However, one of the major challenges for LTC is the cold condition. In cold conditions, stable compression ignition is hard to realize, while thermal efficiency and emissions deteriorate, especially for gasoline or fuel with high octane number. This study presents using pressure sensor glow plugs (PSG) to realize Glow plug assisted compression ignition (GA-CI) at cold conditions. Further, a glow plug control unit (GPCU) is developed, a closed-loop power feedback control algorithm is introduced based on GPCU. In the experiment, engine coolant temperature is swept. Experimental results show that GA-CI has earlier combustion phases, larger combustion duration and higher in-cylinder pressure. And misfire is avoided, cycle-to-cycle variations are greatly reduced.
2017-09-04
Journal Article
2017-24-0140
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Pablo Mendoza Villafuerte, Luis Sousa
Abstract Due to the need to properly quantify vehicle emissions in real world operation, Real Driving Emissions (RDE) test procedures will be used for measuring gaseous emissions on new EURO 6 vehicles.at the RDE 1 & 2: Commission Regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles. Updated regulations have been enhanced to define RDE tests boundaries and data analysis procedures, in order to provide an accurate way to obtain representative results. The boundary conditions defined for vehicle testing include external atmospheric temperature, which can range from 0°C to around 30°C, for moderate conditions and -7°C up to 35°C for extended conditions in RDE tests. As a result of this range of possible test ambient temperature, pollutant emissions and energy consumption can vary considerably.
2017-03-28
Technical Paper
2017-01-0179
Saravanan Sambandan, Manuel Valencia, Sathish Kumar S
Abstract In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Abstract Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-1217
Jiangong Zhu, Zechang Sun, Xuezhe Wei, Haifeng Dai
Abstract An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
2017-03-28
Journal Article
2017-01-1319
Christoph Huber, Bernhard Weigand, Heinrich Reister, Thomas Binner
Abstract A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
2017-03-28
Journal Article
2017-01-1322
Kunihiko Yoshitake, Hiroyuki Tateyama, Atsushi Ogawa
Abstract Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
2016-11-08
Journal Article
2016-32-0028
Pascal Piecha, Philipp Bruckner, Stephan Schmidt, Roland Kirchberger, Florian Schumann, Stephan Meyer, Tim Gegg, Stefan Leiber
Abstract Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
2016-10-24
Journal Article
2016-01-9075
Martijn van Essen, Sander Gersen, Gerco van Dijk, Torsten Mundt, Howard Levinsky
Abstract The effects of air humidity on the knock characteristics of fuels are investigated in a lean-burn, high-speed medium BMEP engine fueled with a CH4 + 4.7 mole% C3H8 gas mixture. Experiments are carried out with humidity ratios ranging from 4.3 to 11 g H2O/kg dry air. The measured pressure profiles at non-knocking conditions are compared with calculated pressure profiles using a model that predicts the time-dependent in-cylinder conditions (P, T) in the test engine (“combustion phasing”). This model was extended to include the effects of humidity. The results show that the extended model accurately computes the in-cylinder pressure history when varying the water fraction in air. Increasing the water vapor content in air decreases the peak pressure and temperature significantly, which increases the measured Knock Limited Spark Timing (KLST); at 4.3 g H2O/kg dry air the KLST is 19 °CA BTDC while at 11 g H2O/kg dry air the KLST is 21 °CA BTDC for the same fuel.
2016-10-17
Technical Paper
2016-01-2256
Kristin Götz, Barbara Fey, Anja Singer, Juergen Krahl, Jürgen Bünger, Markus Knorr, Olaf Schröder
Abstract The target of the European Union (EU) from the 1990s has been to reduce the level of greenhouse gas (GHG) in the climate by 40 % by 2030 [1]. Currently the transport sector is one of the biggest greenhouse gas emission producer in the EU [2]. Drop-in biofuels can contribute to the reduction of GHG emissions in the transport sector. Diesel R33, a newly developed biofuel enables sustainable mobility fulfilling the European diesel fuel specification and reduces the GHG emissions by about 18.2 % against fossil diesel fuel. Diesel R33 is made of 7 % used cooking oil methyl ester, 26 % hydrotreated vegetable oil (HVO) and 67 % high quality diesel fuel. HVO was produced from rapeseed and palm oil. This new biofuel was tested in a fleet of 280 vehicles (passenger cars, light duty vehicles, off-road vehicles and urban buses) covering all emission classes. The impact of the new fuel on the vehicles, their emissions and the engine oil aging was investigated.
2016-10-17
Journal Article
2016-01-2255
Martin Krieck, Marco Günther, Stefan Pischinger, Ulrich Kramer, Thomas Heinze, Matthias Thewes
Abstract Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
2016-09-27
Technical Paper
2016-01-8155
Devaraj Dasarathan, Jonathan Jilesen, David Croteau, Ray Ayala
Abstract Side window clarity and its effect on side mirror visibility plays a major role in driver comfort. Driving in inclement weather conditions such as rain can be stressful, and having optimal visibility under these conditions is ideal. However, extreme conditions can overwhelm exterior water management devices, resulting in rivulets of water flowing over the a-pillar and onto the vehicle’s side glass. Once on the side glass, these rivulets and the pooling of water they feed, can significantly impair the driver’s ability to see the side mirror and to see outwardly when in situations such as changing lanes. Designing exterior water management features of a vehicle is a challenging exercise, as traditionally, physical testing methods first require a full-scale vehicle for evaluations to be possible. Additionally, common water management devices such as grooves and channels often have undesirable aesthetic, drag, and wind noise implications.
2016-09-27
Journal Article
2016-01-8152
Brian R. McAuliffe, David Chuang
Abstract In an effort to support Phase 2 of Greenhouse Gas Regulations for Heavy-Duty Vehicles in the United States, a track-based test program was jointly supported by Transport Canada (TC), Environment and Climate Change Canada (ECCC), the U.S. Environmental Protection Agency (EPA), and the National Research Council Canada (NRC) to assess aerodynamic evaluation methodologies proposed by the EPA and to provide a site-verification exercise against a previous test campaign with the same vehicle. Coast-down tests were conducted with a modern aerodynamic tractor matched to a conventional 16.2 m (53 ft) dry-van trailer, and outfitted with two drag reduction technologies. Enhanced wind-measurement instrumentation was introduced, consisting of a vehicle-mounted fast-response pressure probe and track-side sonic anemometers that, when used in combination, provided improved reliability for the measurements of wind conditions experienced by the vehicle.
2016-09-20
Journal Article
2016-01-2022
Ajay Rao, Vivek Karan, Pradeep Kumar
Abstract Turbulence is by far the number one concern of anxious passengers and a cause for airline injuries. Apart from causing discomfort to passengers, it also results in unplanned downtime of aircrafts. Currently the Air Traffic Control (ATC) and the meteorological weather charts aid the pilot in devising flight paths that avoid turbulent regions. Even with such tailored flight paths, pilots report constant encounters with turbulence. The probability of turbulence avoidance can be increased by the use of predictive models on historical and transactional data. This paper proposes the use of predictive analytics on meteorological data over the geographical area where the aircraft is intended to fly. The weather predictions are then relayed to the cloud server which can be accessed by the aircraft planned to fly in the same region. Predictive algorithms that use Time series forecasting models are discussed and their comparative performance is documented.
2016-09-18
Journal Article
2016-01-1959
Laura Sguotti, Davide Olivieri, Domenico Bosco
Abstract Bearing friction is a direct contribution to vehicle CO2 emissions. The friction is defined as the total resistance to rotation, resulting from the combination of rolling and sliding friction in the contact areas. First, friction reduction was approached from a theoretical standpoint by employing modeling and simulation techniques. Improvements identified in simulation were then used to: create a new set of design rules for the internal geometry of the bearing, introduce a new grease, develop new seals, also with the integration of labyrinth functions and an optimization of the preload range variation. In order to provide a reliable confirmation of the expected achievements, a new friction measurement methodology was also introduced.
2016-09-14
Technical Paper
2016-01-1879
Libo Huang, Liang Chang, Jie Bai, Huanlei Chen
Abstract Millimeter-wave automotive radars can prevent traffic accidents and save human lives as they can detect vehicles and pedestrians even in night and in bad weather. Various types of automotive radars operating at 24 and 77 GHz bands are developed for various applications, like adaptive cruise control, blind-spot detection and lane change assistance. In each year, millions of millimeter-wave radar are sold worldwide. Millimeter-wave radar is composed of radar hardware and radar signal processing software, which detects the targets among noise, measures the distance, longitudinal speed and the azimuth angle of the targets, tracks the targets continuously, and controls the ego vehicle to brake or accelerate. Performance of the radar signal processing software is closely related with the radar hardware properties and radar measurement conditions.
2016-09-14
Journal Article
2016-01-1903
Tao Wang, Weiwen Deng, Sumin Zhang, DaZhi Wang, Junyong Liu
Abstract Intelligent vehicles have gained increasing popularity in recent years as traffic safety and efficiency have become the major challenges faced by automotive industry. Vehicle positioning system, such as GPS, plays more and more important role on intelligent or autonomous driving. Intelligent vehicle technologies have been developed and tested mainly based on intensive field experiment under various driving scenarios. However, the large variation, uncertainty and complexity of the driving environment, including buildings, traffic and weather conditions have posed great challenges on test repeatability and system robustness. This paper proposes a GPS model considering software-centered observation errors. The focus of the research is on its error to reflect the real signals from GPS measurement.
2016-04-05
Technical Paper
2016-01-1450
Peter Vertal, Hermann Steffan
Abstract The objective of this work is to test the potential benefit of active pedestrian protection systems. The tests are based on real fatal accidents with passenger cars that were not equipped with active safety systems. Tests have been conducted in order to evaluate what the real benefit of the active safety system would be, and not to gain only a methodological prediction. The testing procedure was the first independent testing in the world which was based on real fatal pedestrian accidents. The aim of the tests is to evaluate the effectiveness of the Volvo pedestrian detection system. The in-depth accident database ZEDATU contains about 300 fatal pedestrian traffic accidents in urban areas. Eighteen cases of pedestrians hit by the front end of a passenger vehicle were extracted from this database. Cases covering an average traffic scenario have been reconstructed to obtain detailed model situations for testing.
2016-04-05
Journal Article
2016-01-0262
Matthew A. Jeffers, Larry Chaney, John P. Rugh
Abstract When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
2016-04-05
Technical Paper
2016-01-0256
Hideaki Nagano, Kenji Tomita, Yasuhiro Tanoue, Yuji Kobayashi, Itsuhei Kohri, Shinsuke Kato
Abstract In the winter, windshield glass fogging must be prevented through the intake of outdoor air into a vehicle. However, the corresponding energy loss via the ventilation system cannot be ignored. In the present study, the defogging pattern on the windshield is evaluated and the water vapor transportation in the flow field in the vehicle is analyzed in order to investigate the ventilation load by means of a numerical simulation. Some examined cases involve new outlet positions. Additionally, a new, energy-saving air supply method for defogging, with so-called “double-layer ventilator”, is proposed. In this method, one air jet layer is obtained via a conventional defogging opening in the vicinity of the windshield, supplying an outdoor air intake. The other jet consists of recirculated air that covers the outdoor air, preventing it from mixing with the surrounding air.
2016-04-05
Technical Paper
2016-01-0216
Ramanand Singh, Remesh Kuzhikkali, Nitesh Shet, Sekarapandian Natarajan, Govind Kizhedath, Murugan Arumugam
Fogging (i.e. condensation of water vapor) in headlamps in severe weather conditions present both a performance and potential safety concern for automotive companies. Conventional headlamps are based on incandescent bulbs. In recent times, LED lighting has increasingly become the norm. However, LED based headlamps are prone to higher levels of fogging because they inherently produce less heat than the conventional incandescent or halogen bulbs. A headlamp design must be able to dispose all the formed condensate/fog in a fixed time even under severe thermal conditions. It is of great importance for the car manufacturer to be able to simulate the risk of condensation early in the design stage with an eye on the overall cost reduction. The combined use of experimental studies and numerical modelling is important to optimize headlamp design and to produce high-performance headlamps.
2016-04-05
Technical Paper
2016-01-0780
Sebastian Zirngibl, Georg Wachtmeister
Abstract Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
2016-04-05
Technical Paper
2016-01-1008
Piotr Bielaczyc, Joseph Woodburn, Andrzej Szczotka
Abstract Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
2016-04-05
Journal Article
2016-01-0997
Huzeifa Badshah, David Kittelson, William Northrop
Abstract To ensure reliable starting under cold weather conditions (< 0 oC ambient), gasoline engines use fuel enrichment, leading to higher soot formation and greater tailpipe particle number (PN) emissions. In gasoline direct injection (GDI) engines, PN emissions are higher due to liquid fuel impingement on cold surfaces of the combustion chamber and piston. This study characterizes solid (mostly elemental carbon) and semi-volatile (organic) particle number, mass, and size distributions during cold-cold engine start-up from light duty vehicles. Particle emissions were sampled from vehicles upon engine start-up after an overnight soak, with an average ambient temperature of -8 ± 7 oC. The average PN emitted during 180 seconds by GDI and PFI vehicles were 3.09E+13 and 2.12E+13 particles respectively.
2016-04-05
Journal Article
2016-01-0371
Wenkai Li, Carlos Engler-Pinto, Haitao Cui, Weidong Wen, Xuming Su
Abstract In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
2016-04-05
Technical Paper
2016-01-0009
Soham Bakshi, Badih Jawad, Selin Arslan, Liping Liu, Kingman Yee
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
2016-04-05
Technical Paper
2016-01-1067
Mohannad Hakeem, Gopichandra Surnilla, Christopher House, Michael Shelby, Jason Williams, William Ruona, Naginder Gogna
Abstract Engine Mapping is usually performed under nominal conditions which include a humidity level of 8 g/Kg. Customers driving at different conditions (which may range from 1 g/Kg in colder and dry climates and up to 35 g/Kg as in tropical climates) may experience less-than-optimal engine combustion which results in reduced onroad fuel economy. Humidity has an EGR-equivalent effect, and measuring it will correct the spark timing, mainly at Maximum Brake Torque (MBT) and borderline conditions, and claim back some of those losses. This paper aims at quantifying the small fuel economy benefits associated with on-board humidity measurement for certain customer use cases at high humidity conditions. Dyno data was collected for a Ford 2.3L GTDI engine at three speed load points, and intake air humidity was varied between 20% and 80% relative humidity.
2016-04-05
Technical Paper
2016-01-1068
Mohannad Hakeem, Gopichandra Surnilla, Michael Shelby, Christopher House, Jason Williams
Abstract Engine Mapping is usually performed under nominal conditions which include a humidity level of 8 g/Kg. Customers driving at different humidity conditions (which may range from 1 g/Kg in dry and colder climates and up to 35 g/Kg as in tropical climates) may experience a degraded performance due to the errors in engine torque estimation provided by the ECU. The torque estimation error interacts with many other features that affect drivability, such as the peak performance of the engine, transmission shift quality, etc. This paper extends the investigation in Part-1 by analyzing and quantifying the torque estimation error that may result in certain customer use cases at high humidity conditions, due to the mismatch between calibrated and actual conditions. The analysis is mainly performed for Speed-Density systems (MAP sensor based) but the effect of mass air flow sensor (MAF sensor) based systems is also briefly considered.
2016-04-05
Technical Paper
2016-01-0927
David Culbertson, Magdi Khair, James Pradun, Henning Gero Petry, Anne Ungermann
Abstract Modifications have been made to the calibration and control of Diesel engines to increase the temperature of the exhaust especially in cold weather and part load operation. The main purpose for this advanced calibration is to enable the reduction of emissions by improving catalytic activity. An alternative method for increasing exhaust temperature is providing electric heat. Test results show the feasibility of applying various amounts of electric heat and the related increases in exhaust temperature as well as speed of heating. Simulation modeling extends the application of electric heat to a complete engine map and explores the potential impact on engine performance and emission reduction benefits.
Viewing 1 to 30 of 514

Filter