Display:

Results

Viewing 1 to 30 of 2252
2015-06-15
Technical Paper
2015-01-2081
Hossein Habibi, Graham Edwards, Liang Cheng, Haitao Zheng, Adam Marks, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan
Wind turbines mounted on cold climate sites are subject to icing which could significantly influence the performance of turbine blades for harvesting wind energy. To alleviate this problem, a number of techniques have been developed and tested. The currently used methods are surface coating, antifreeze chemicals, electrical resistance heating, hot air circulation, pulse electrothermal de-icing, manual chip-off, etc. Almost all thermal de-ice methods demand a high level of power to operate. Also, the high temperature induced to the blade by the thermal techniques may pose a risk for the integrity of composite blades. A relatively new strategy used for ice protection systems is ultrasonic guided waves (vibrations of very short length wave) on which a few research projects have been recently accomplished. This method is well known for non-destructive testing applications in which the waves typically propagate between 20 kHz and 100 kHz for long-range ultrasonic testing.
2015-06-15
Technical Paper
2015-01-2203
Maaz Farooqui, Tamer Elnady, Ragnar Glav, Tony Karlsson
A novel Metallic porous absorbing material has been studied in this work. This material is capable of providing similar or better sound absorption compared to the conventional porous absorbers, but with a robust and less degradable properties. Several configurations of the material have been tested inside an expansion chamber with spatially periodic area changes. Bragg scattering was observed in some configurations with certain lattice constants. A new way of characterizing the porous absorber from a simple Transmission loss measurement has been proposed. This Transmission loss measurement can be used to extract the complex effective sound speed and density, fundamental porous material properties. The experimental results were compared with Two-port theory and Finite elements method and a close agreement was found.
2015-06-15
Technical Paper
2015-01-2212
A. Elsawaf, H. Metered, T. Vampola, Z. Sika
This paper presents the particle swarm optimization (PSO) algorithm to search about the optimum feedback controller gains for the active mount suspension, for the first time, to reduce the transmitted vibrations to the suspended mass placed over a structure. A mathematical model and the equations of motion of the structure system with an active mount suspension are derived and simulated using Matlab/Simulink software. The proposed PSO algorithm aims to minimize the acceleration of the suspended mass as the objective function with constraint of the actuator force. System performance criteria are evaluated in both the time and frequency domains in order to count the effectiveness of the proposed controller. The simulation results reveal that the proposed feedback controller gains tuned by PSO algorithm offer a significant improvement of the vibration isolation compared with both the passive and active mount controlled using the linear quadratic regulator (LQR).
2015-06-15
Technical Paper
2015-01-2211
Michael J. Santora, Dillon Savage
In the present study by the University of Idaho Clean Snowmobile Challenge (UICSC) team, the necessity, history, and research of noise reduction strategies in two-stroke snowmobile exhaust is presented. Testing and design is discussed to show the decision making process of College Design Series (CDS) teams. The UICSC CDS team is comprised of mechanical, electrical, and computer engineers. The development from static to dynamic noise cancellation is explained as a proof of concept and to further demonstrate CDS design. The study presents math models that validate each noise reduction technique. The noise reduction includes both a mechanically active quarter-wave resonator (MAQR) and mechanically active Helmholtz resonator (MAHR). Viability is given for both design types. These are presented with supporting implementation data. Control for both resonator platforms is discussed. The relative effect of each technology is compared based off cost and packaging.
2015-06-15
Technical Paper
2015-01-2216
Dong Chul Park, Eun Soo Jo, Seokgwan Hong, Michael Csakan
An important trend among vehicle NVH engineers is to produce the attractive engine sounds matching with a vehicle concept and engine performance. Recently customers have much more interests in their personal preferences and enjoying tuning their cars. The PESS(Personalized Engine Sound System) has been developed for making a unique and individual concept of a vehicle. The system helps customers make variety of engine sound in a single vehicle using active sound design technology. In this system, three different concept of engine sound has been defined-Dynamic, Sporty, and Extreme. Each of the engine sounds can be adjusted with a parameter that determines the timbre such as main orders, half orders, and high orders. In addition, the extent to the drivers stepping on the accelerator pedal has been used as a parameter to differ the sound response. An AVN application has been implemented that allows users to easily design those functions.
2015-06-15
Technical Paper
2015-01-2215
Thomas L. Lago
How to decrease noise and vibration exposure has been of interest for many years. Empirical data have verified that too high dose values can create multiple problems to a human body - often severe. Some years back, the European Machinery Directive has increased the responsibility for manufacturers and employers to make sure limits are complying with legislation. Classical technology often consists of passive solutions aiming at trying to cut back on noise and vibration levels. For low frequency, these methods are often lacking the needed performance especially if weight should be considered at the same time. A smart combination of passive and active techniques can make a real difference. Today, with possibilities for low cost and embedded electronics and the rapid development of new actuators, a vast range of applications are possible for this combined combat approach, with a financial advantage as well.
2015-06-15
Technical Paper
2015-01-2213
John Van Baren
The accumulated damage that a product experiences in the field due to the variety of vibration stresses placed upon it will eventually cause failures in the product. The failure modes resulting from these dynamic stresses can be replicated in the laboratory and correlated to end use environment to validate target reliability requirements. This presentation will discuss which random profile is needed to simulate end use environment, how to combine multiple vibration environments into one, and how to use FDS to accelerate the test.
2015-06-15
Technical Paper
2015-01-2219
Al Ganeshkumar, Shinichi Fukuhara
Active Noise Cancellation technology is widely used in automobiles to reduce engine harmonic noise. ANC systems require one or more microphones mounted in the cabin to monitor the harmonic noise level and provide feedback to the DSP algorithm. The ideal locations for the microphones are as close as possible to the passenger seating locations and away from any wind turbulence that can hit the diaphragm of the microphone. Excessive wind turbulence on the diaphragm can cause the ANC adaptive filter weights to be perturbed enough and cause audible ‘pumping’ type artifacts. For several practical reason it’s not always possible to control the location of the microphones and hence a DSP software and/or mechanical solution often needs to incorporated in the system. This paper will primarily address the DSP software solutions to detect wind turbulence noise in ANC microphones so appropriate counter-measures can be applied to eliminate the unwanted artifacts.
2015-06-15
Technical Paper
2015-01-2218
Shuguang Zuo, Jun Zhang, xudong wu, jiajie HU, Guo Long
Title: Study on Active Noise Control of Blower in Fuel Cell Vehicle under Transient Conditions Authors: Zuo Shuguang, Zhang Jun, Wu Xudong, Hu Jiajie, Long Guo Abstract: Blower is one of the main noise sources of fuel cell vehicle. In this paper, a narrowband active noise control (ANC) model is established based on adaptive notch filter (ANF) to control the medium-high frequency noise produced by the blower. In actual application, the frequency of reference signal differs from the frequency of the noise signal inevitably. This difference is referred to as frequency mismatch (FM) which greatly degenerates the performance of the narrowband ANC algorithm. Under transient conditions, in order to reduce the FM of ANC for blower, a new Frequency Mismatch Filtered-Error Least Mean Square algorithm (FM-FELMS) is proposed to attenuate blower noise.
2015-06-15
Technical Paper
2015-01-2217
Guohua Sun, Tao Feng, JI XU, Mingfeng Li, Teik Lim
Current powertrain active noise control (ANC) system is not sufficient enough to track the fast engine speed variations, and yield consistent convergence speeds for individual engine order such that a balanced noise reduction performance can be achieved over a broad frequency range. This is because most of these ANC systems are configured with the standard filtered-x least mean squares (FxLMS) algorithm, which has an inherent limitation in the frequency-dependent convergence behavior due to the existing of secondary path model (electro-acoustic path from the input of control loudspeaker to the output of monitoring error microphone) in the reference signal path. In this paper, an overview is given first to compare several recently modified FxLMS algorithms to improve the convergence speed for harmonic responses such as eigenvalue equalization FxLMS (EE-FXLMS) and normalized reference LMS (NX-LMS) algorithms.
2015-06-15
Technical Paper
2015-01-2225
Peng Yu, Tong Zhang, Jing Li, Shiyang Chen, Rong Guo
Faced on transient vibration of EV, considering the characteristics of the electric drive system, active and passive integrated transient vibration control method of power train mounting system was proposed. First, models of power train system and mounting system were established, modal characteristics were grasped by simulation and experiment; a feed-forward controller was constructed from the active control perspective, mounting system transient vibration and power train torsion vibration were reduced; based on this, further optimization of mounting system was conducted from a passive control perspective. Results show that the active and passive integrated control method can effectively reduce the dynamic reaction force of mounting points, improve the vibration conditions of power train and body as well.
2015-06-15
Technical Paper
2015-01-2221
Longchen Li, Wei Huang, Keda Zhu, Xiujie Tian, Richard E. Wentzel, Melvyn J. Care
The parameters such as step size and filter length have a great influence on active noise control. Simulation often achieves a good result. However, it is difficult to get a good noise reducing effect in the experimental process. This paper introduced the theory of feed-forward active noise control system with FXLMS algorithm. A simulation by using LabVIEW was designed to analyze the factors which influenced convergence and stability. Then experiments in duct system had been done and analyzed. The experimental results verified the correctness of the simulation and indicated that good primary and secondary paths could reduce the difficulty of adjusting parameters and achieve fast convergent speed and good stability. At last a simple application had been done and achieved a good result.
2015-06-15
Technical Paper
2015-01-2222
Nikos Zafeiropoulos, Marco Ballatore PhD, Andy Moorhouse PhD, Andy Mackay
Road noise forces can excite different structural resonances of the vehicle hence a high number of sensors required for observing and separating all the vibrations that are coherent with the cabin noise. Current reference sensor selection methods for feedforward road noise control result to high number of sensors. Therefore there is a necessity for reducing the number of sensors without degrading the performance of an ANC system. In the past coherence function analysis has been found to be useful for optimising the sensor location. Thus, in this case coherence function mapping was performed between an array of vibration sensors and a microphone in order to identify the locations on the structure with highly correlated with road bands in the compartment. A vehicle with an advanced suspension system was used for applying the method and defining some locations as reference signals for feedforward active road noise control.
2015-06-15
Technical Paper
2015-01-2223
Rolf Schirmacher
Active Noise Control (ANC) and Active Sound Design (ASD) have long been seen as emerging technologies. During recent years, however, they became quite mainstream for new vehicle and infotainment platforms within a broad range of OEMs. This paper presents the current state-of-the-art of production ANC and ASD systems, including the lessons learned during the last years of bringing the technology from the lab into vehicles. Based on this current status, critical elements for an even broader application of the technologies are identified and developments to overcome them are discussed. In addition, as the integration of these technologies with other in-vehicle systems is crucial for a commercially viable application, trends of future IVI systems are discussed and integration scenarios for next generation IVI systems are shown.
2015-06-15
Technical Paper
2015-01-2230
Chatter vibrations are causing large monetary losses daily in industry. New materials have increased the challenges with harmful vibration levels. Since the vibrations, when observed as a final result, are chaotic and the vibration process nonlinear, it is a challenging task to deal with it. It is also a common “understanding” in the cutting industry that chatter is RPM (the rotational speed) dependent, since the behavior changes with RPM. Many attempts have been done over many years to mitigate and understand the vibrations. In our vast research on these topics, we have found that it is rewarding to classify the vibrations into categories, enabling a better understanding of its underlying physics and “source of vibrations,” and thus also the formulation of a possible remedy. An analysis approach has been developed where vibrations are analyzed and categorized and a GO/NOGO indicator is telling if the machine has the “right type of vibrations.”
2015-06-15
Technical Paper
2015-01-2259
Jan Zuleeg
Tribological contacts with plastic or polymers tend to show stick-slip and have the ability to generate noise. With the help of lubricants like bonded coatings, greases and fluids the tribological properties can be well-directed and affected. In this paper it is shown, how well known theories about polymer friction from the literature can be used for the friction of lubricants and how these findings can help in the development of new lubricants. With an adequate stick-slip test rig (Ziegler Stick-Slip test rig) it is demonstrated, how the theories can be confirmed. The introduced test methods are used in the development for lubricants for automotive applications e.g. in the interior of the car including invisible lubricants developed for Class "A" surfaces.
2015-06-15
Technical Paper
2015-01-2257
Ki-Chang Kim, Sang-Woo Lee, Seok-Gil Hong, Jay Kim, Gil-Jun Lee, Jae Min Choi, Yong-Jin Kim
Recently, in automobile industry, squeak and rattle (S&R) in body structure and trim parts has become a very significant issue in Initial Quality Study (IQS). In this study, a new CAE process developed by the authors to reduce S&R noises in the door system is reported. Friction-induced vibration and noise generation mechanism of a door system are studied numerically. The effect of degradation of plastics used in door trims is studied by using a model obtained from experiments. Effects of changes of material properties such as Young's modulus and loss factor, due to the material degradation as well as statistical variations are predicted using, several cases of door systems. As a new concept, the rattle and squeak index is proposed, which can be used to guide design of the body structure and trim parts. The predicted of S&R in the door system, from the proposed CAE process were compared to those obtained from the experiment.
2015-06-15
Technical Paper
2015-01-2258
Gil-Jun Lee, Kichang Kim, Jay Kim
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs were developed to automatically detect and rate S&R events over the years, these programs could distinguish squeak and rattle noises from each other. Because the causes of squeak noises and rattle noises are different, distinguishing two types of noises will be very useful for automotive engineers in choosing an appropriate solution to reduce S&R noises. Authors developed a new algorithm to differentiate squeak noises and rattle noises utilizing a combination of sound quality metrics. Specifically, sharpness, roughness and fluctuation strength of the noises were employed in the algorithm. A three-dimensional space defined by the maximum values of sharpness, roughness, and fluctuation strength of the noise are used to differentiate two different types of noises. The developed algorithm was applied to 86 recorded squeak or rattle noises.
2015-06-15
Technical Paper
2015-01-2270
Oliver Unruh, Christopher Blech, Hans Peter Monner
Global attenuation of structural velocities is one of the most effective approaches in order to reduce noise emitted by shell structures such as a car roof or aircraft fuselage panels. This global reduction can be achieved by the application of passive damping treatments like constraint layer damping on large fractions of the vibrating surface. The main disadvantage of this approach is the fact that it leads to increasing total cost and weight of the structure. To overcome this problem, acoustic black holes can be used to focus the energy of structure borne sound on some critical locations of the structure in order to dissipate it by a very limited application of damping treatments. Acoustic black holes are funnel shaped thickness reductions that attract sound radiating bending waves and allow a global vibration reduction by an acceptable use of additional damping.
2015-06-15
Technical Paper
2015-01-2277
Vishal Vaidya, Pravin Hujare
Recently quietness has become an important quality parameter for automotive vehicles and as a result various improvements have been brought to reduce noise at system and vehicle level. Due to stringent noise emission norms on automotive vehicles and increasing desire of quieter in-cab performance by users, reduction of air intake noise tends to be an area of explanation. Air intake noise, which was relatively considered as a minor source of noise in the past, is now gaining importance. This paper emphasizes the sound pressure level reduction through the increase in transmission loss at an air intake system. The intake noise of an automobile induced by firing of an engine accompanies acoustic resonance of ducts of an intake system. Conventionally, the adoption of an integrated type resonator was one of possible ways to eliminate the booming noise due to acoustic resonances of air ducts.
2015-06-15
Technical Paper
2015-01-2271
Yong Du Jun, Bong Hyun Park, Kang Seok Seo, Tae Hyun Kim, Myoung Jae Chae
An objective measure is proposed for seat riding comfort evaluation under low frequency (0~2 Hz) vibratory conditions which represents typical roll and pitch motions of driving motor vehicles. The related feeling due to this low frequency vehicle motion is termed ‘hold feeling’ because the seated body may tend to deviate from the defined seating position under such vehicle motion inputs. In the present study, dynamic pressure distribution measurements have been performed with a roll motion simulator at different frequencies between 0.3 and 1.0 Hz, to monitor the interface pressure change behavior of the seat-subject body. Temporal changes in body pressure in terms of the magnitude and the representative locations, and the time delay in pressure change at different regions of the seat are identified to be useful parameters for describing the subject's responses and with the subjective test results.
2015-06-15
Technical Paper
2015-01-2272
Pradeep Dinkar Jawale, E Ramachandran, Nagesh Voderahobli Karanth, Ammar Ali
Day by day, customer expectations for comfort in the vehicle interior are driving automotive manufactures to provide better environment in their vehicles. Considering the ongoing developments in diesel powered engines and vehicles in India, the necessity of noise reduction has become more relevant. In such a scenario, NVH benchmarking has become very critical for new product development. Also, given the increasing customer awareness, noise and vibration have also become indicators of overall vehicle perception and hence provide crucial inputs for NVH design, optimization and target setting. In this paper, two families of diesel powered cars in India have been evaluated for their NVH performance, both for exterior & interior noise to arrive at noise & vibration contribution relevant to passenger comfort in order to quantify contribution of powertrain, tyre, wind etc. to the overall noise and their trends are presented.
2015-06-15
Technical Paper
2015-01-2276
Zhengyu Liu, Donald Wozniak, Manfred Koberstein, Curtis Jones, Jan Xu, Suhas Venkatappa
Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems which equipped with variable displacement compressors. In this study, the condition of the gurgling generation is investigated in vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV. By conducting literature review, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized, and then the gurgling mechanism is explained as that the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant sub-system (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
2015-06-15
Technical Paper
2015-01-2275
Manfred Koberstein, Zhengyu Liu, Curtis Jones, Suhas Venkatappa
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle at 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
2015-06-15
Technical Paper
2015-01-2224
Yong Xu
The purpose of this study was to develop an effective active control system for improving the sound quality of vehicle engine noise. The goal of the designed system was not to decrease the sound level of the residual noise, but to adjust its quality characteristics. The sound quality of vehicle engine noise was evaluated with both of subjective and objective evaluations. Then a linear regression analysis was performed in order to expressed the subjective sound quality with measureable objective parameters. Based on the periodic properties of vehicle engine noise, a waveform, synthesized with five sine waves, was used as a reference signal in the designed active control system. The primary noise at each reference frequency was controlled by an adaptive notch filter, the taps of which were updated by the FXLMS algorithm.
2015-06-15
Technical Paper
2015-01-2220
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
This paper describes an active sound tuning (AST) system for vehicle powertrain response. Instead of simply aiming to attenuate cabin interior noise, AST system is capable of reshaping the powertrain response based on predetermined vehicle sound quality criteria. However, conventional AST systems cannot yield a balanced result over the broad frequency range when applied to powertrain noise. It is due to the fact that existing systems are typically configured with the filtered-x least mean square (FXLMS) algorithm or its modified versions, which has inherent frequency dependent convergence behavior due to large dynamic range of secondary path (the electro-acoustic path from the control speaker to the error microphone). Therefore, fast convergence can only be reached at the resonant frequencies.
2015-06-15
Technical Paper
2015-01-2231
Masashi Arakawa, Miho Nakatsuka, Hiroo Yamaoka
To analyze gear transmitted vibration which occurs due to transmission error, a new prediction methodology is developed when vibration transmits through engine mounts from housing. This paper focuses on a left-hand engine mount and brackets which are assembled on a transmission housing of a compact FF vehicle connecting transmission housing to body structure. Thus a modeling technique dealing with the dynamic characteristic of mount rubber and its bracket is indispensable. A mount rubber is pre-loaded under power plant weight and undergoes from its initial shape to deformed one until reaching equilibrium state. To precisely predict a dynamic characteristic of mount rubber when the power plant is mounted in vehicle, we have to consider the deformed shape when pre-load is applied.
2015-06-15
Technical Paper
2015-01-2274
Paul R. Donavan, Bruce Rymer
Rumble strips are used commonly through the United States to alert drivers that they have wandered out of the lane of travel and need to take corrective action. In general, there are two conflicting requirements for rumble strips: producing sufficient warning for vehicle operators and minimizing the exterior noise that can create community annoyance. A measurement program was completed to assess driver input versus exterior noise generation for four vehicles designs and two approaches to rumble strip design. The vehicles included a small compact car, an immediate size car, a full sport utility vehicle, and a medium duty dump truck. The rumble strips included one of conventional design providing shorter wavelength input to the tire and one designed to provide longer wavelength, more harmonic input to the tire.
2015-06-15
Technical Paper
2015-01-2214
Zuo Shuguang, Guo Long, Xudong wu, Longyang Xiang, Jun Zhang, jiajie HU
In order to reduce the critical narrowband high-frequency noise produced by the blower in the auxiliary system of fuel cell vehicle (FCV), active noise control (ANC) method is preferably adopted instead of traditional passive mufflers since the blower demands clean air condition and expects good acoustic performance. However, it’s entirely possible that the inaccurate signal acquisition (e.g. existing the rotational speed error) in ANC practical applications can lead to the frequency difference between the reference signal and the actual primary signal, i.e. the frequency mismatch (FM). FM significantly degrades the high-frequency performance of narrowband ANC system. In this paper, a new narrowband ANC system is proposed to compensate for the performance degeneration due to the existence of FM and in the meanwhile improve noise reduction.
2015-06-15
Technical Paper
2015-01-2273
Curtis Jones, Zhengyu Liu, James Hurd III, Suhas Venkatappa
This paper presents the methodology of predicting vehicle level automotive air-handling system air-rush noise sound quality (SQ) using the sub-system level measurement. Measurement setup in both vehicle level and sub-system levels are described. To assess the air-rush noise SQ, both 1/3 octave band sound pressure level (SPL) and overall Zwicker's loudness are used. The "Sound Quality Transfer Functions (SQTF)" between sub-system level and vehicle level are developed for the specified climate control modes and vehicle segment defined by J.D. Power & Associates, while the Zwicker's loudness is calculated using the un-weighted predicted 1/3 octave band SPLs by the Matlab-based program. The predicting models are demonstrated in a fairly good agreement with the measured data. The methodology is applied to the development of sub-system SQ requirement for upfront delivery of the optimum design to meet global customer satisfaction.
Viewing 1 to 30 of 2252

Filter