Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 2770
CURRENT
2017-04-28
Standard
J1287_201704
This SAE Standard establishes the test procedure, environment, and instrumentation for determining the exhaust sound pressure levels of motorcycles under stationary conditions. Since initial publication, it has been successfully applied to regulation and monitoring of sound pressure levels of off-highway vehicles, and that remains its recommended application. Users of SAE J1287 for the purpose of roadside enforcement of sound pressure levels for on-highway motorcycles have reported difficulties with its implementation in that application. In response, SAE J2825 was developed, and is recommended for measurement of exhaust sound pressure levels of stationary on-highway motorcycles. Care must be taken not to confuse stationary sound pressure levels with total motorcycle sound pressure levels. This test does not evaluate total motorcycle sound during operation. For this purpose, SAE J331 or SAE J47 is recommended.
CURRENT
2017-04-27
Standard
J2743_201704
This SAE Recommended Practice is intended to describe a procedure for rating the size of single-stage reciprocating air compressors. It describes the conditions that can be used for testing and it defines a standardized rating expressed in SLPM (SCFM).
2017-04-27
WIP Standard
J512
This SAE Standard covers complete general and dimensional specifications for the various types of tube fittings intended for general application in the automotive, appliance, and allied fields. See SAE J1131 for the performance requirements of reusable (push to connect) fittings intended for use in automotive air brake systems.
2017-04-27
WIP Standard
J2494/2
This SAE Standard covers general dimensional specifications for non-metallic body reusable push to connect tube fittings for use in the piping of air brake systems on automotive vehicles. This type of fitting is intended for use with nylon tubing per SAE J844. It is not intended to restrict or preclude other designs of a tube fitting for use with SAE J844. Performance requirements for SAE J844 are covered in SAE J1131. See SAE J2494-3 for the performance requirements of Reusable (push-to-connect) fittings intended for use in Automotive Air Brake Systems and U.S. Department of Transportation FMVSS 571.106.
2017-04-27
WIP Standard
J2494/1
This SAE Standard covers general and dimensional specifications for brass bodied reusable Push to Connect tube fittings for use in the piping of vehicular air brake systems. This type of fitting is intended for use with nylon tubing per SAE J844. See SAE J2494-3 for the Performance Requirements of Reusable (Push to Connect) Fittings Intended for Use in Automotive Air Brake Systems and U.S. Department of Transportation, National Highway Traffic Safety Administration (NHTSA) Federal Motor Vehicle Safety Standards (FMVSS) 571.
2017-04-21
WIP Standard
ARP1971D
This SAE Aerospace Recommended Practice (ARP) covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing/anti-icing fluid spraying system. The unit shall be highly maneuverable for deicing all exterior surfaces of commercial aircraft, of sizes agreed upon between purchaser and manufacturer, in accordance with SAE ARP4737. The vehicle will also be used for aircraft maintenance and inspection. The vehicle shall be suitable for day and night operations.
2017-04-20
WIP Standard
AS9104/1A
These requirements are applicable to IAQG global sectors when utilizing Aerospace Industry Controlled Other Party (ICOP) schemes for the assessment and certidication of supplier quality systems in accordance with the requirements AS/EN/SJAC 9104.
CURRENT
2017-04-18
Standard
J2966_201704
This document outlines general requirements for the use of CFD methods for aerodynamic simulation of medium and heavy commercial ground vehicles weighing more than 10 000lbs. The document provides guidance for aerodynamic simulation with CFD methods to support current vehicle characterization, vehicle development, vehicle concept development and vehicle component development. The guidelines presented in the document are related to Navier-Stokes and Lattice-Boltzmann based solvers. This document is only valid for the classes of CFD methods and applications mentioned. Other classes of methods and applications may or may not be appropriate to simulate the aerodynamics of medium and heavy commercial ground vehicle weighing more than 10 000lbs.
2017-04-14
WIP Standard
J2684
This Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks and buses with a GVWR above 4 540 kg (10 000 lbs) equipped with hydraulic service brakes. There are two main test sequences: Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs are required, and FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters.
2017-04-13
WIP Standard
AIR5875A
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
CURRENT
2017-04-13
Standard
AIR36105B
The present SAE Aerospace Information Report (AIR) provides a list of the main government regulations, SAE and international standards, and standing industry recommendations applying to air cargo unit load devices (pallets, nets, and containers) to be loaded with either baggage or freight on board civil transport aircraft. It is intended to provide unit load devices designers, purchasers, and operators as well as civil transport aircraft and aircraft cargo systems designers within the industry with a list of the available document references to cover the other aspects that do not all directly pertain to airworthiness and testing, listed in 1.1 of AS36100, – Air Cargo Unit Load Devices - Performance Requirements and Test Parameters [TSO-C90].
2017-04-12
WIP Standard
J2601
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light dutyand medium duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
2017-04-11
WIP Standard
AIR6920
This AIR is for use by OEM's and Suppliers developing process gate checklists for highly integrated, complex flight control and vehicle management systems to support the life cycle development validation and verification activities prescribed by ARP4754.
2017-04-11
WIP Standard
ARP6539
This SAE Aerospace Recommended Practice (ARP) provides a process for the verification and validation of monitors used in flight control, utility control, and related components and systems. It is intended to serve as a system specific companion document to SAE ARP 4754.
2017-04-10
WIP Standard
J2848/3
This SAE recommended practice defines the system and component functions, measurement metrics, testing methodologies for evaluating the functionality and performance of ground vehicle CTIS. Systems of this type allow the driver to select the operational tire pressure set point (TPSP) based on off-highway conditions, and, upon returning to highway operations, maintain the inflation pressure to the vehicle specified level. These systems are recommended to address all serviceable tires as originally installed on a vehicle by the OEM and/or specialty vehicle manufacturer, and, for the aftermarket (including replacement or spare parts) are recommended (but optional) to address all tire/rim combinations installed after initial vehicle sale or in-use dates.
CURRENT
2017-04-06
Standard
J3059_201704
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance.
2017-04-06
WIP Standard
J2848/1
This SAE recommended practice defines the system and component functions, measurement metrics, testing methodologies for evaluating the functionality and performance of tire pressure systems, and recommended maintenance practices within the known operating environments. This document is applicable to all axle and all wheel combinations for single unit powered vehicles exceeding 7257 kg (16 000 US lb) gross vehicle weight rating (GVWR), and multi-unit vehicle combinations, up to three (3) towed units, which use an SAE J560 connector for power and/or communication, or equivalent successor connector technology, or which use a suitable capacity wireless solution. Examples of included single chassis vehicles would be – utility and delivery vans, tow trucks, rack trucks, buses, recreational vehicles, fuel trucks, trash trucks, dump trucks, cement trucks, and tractors.
2017-04-05
WIP Standard
ARP6078A
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: - Military aircraft applications - Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) - Inerting of conventional unheated wing tanks or aircraft dry bays - Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
CURRENT
2017-04-05
Standard
ARP6156
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and the chemical attributes associated with the oil formulation. All properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. To assure performance and to provide needed information for engineering design, test methodologies for at least five oil properties or attributes are being addressed: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity. While viscosity versus temperature data are readily available, the above five properties or attributes must be measured under relevant conditions for aero propulsion hardware systems.
CURRENT
2017-04-04
Standard
J68_201704
This SAE Recommended Practice covers standardized basic tests, test methods, and requirements applicable to electromechanical switching devices which may be used on snowmobiles as defined in SAE J33.
CURRENT
2017-04-03
Standard
AIR6127
This SAE Aerospace Information Report (AIR) considers the issue of proper design guidance for high voltage electrical systems used in aerospace applications. This document is focused on electrical discharge mechanisms including partial discharge and does not address personnel safety. Key areas of concern when using high voltage in aerospace applications are power conversion devices, electrical machines, connectors and cabling/wiring. The interaction between components and subsystems will be discussed. The AIR is intended for application to high voltage systems used in aerospace vehicles operating to a maximum altitude of 30000 m (approximately 100000 feet), and maximum operating voltages of below 1500 VRMS (AC)/1500 V peak (DC). These upper voltage limits have been incorporated because this report focuses on extending the operating voltage of non-propulsive electrical systems beyond that of existing aerospace systems.
CURRENT
2017-04-03
Standard
ARP5144A
This SAE Aerospace Recommended Practice (ARP) describes standard methods of heat application to cure thermosetting resins for commercial aircraft composite repairs. The methods described in this document shall only be used when specified in an approved repair document or with the agreement of the Original Equipment Manufacturer (OEM) or regulatory authority..
2017-04-02
WIP Standard
J974
This SAE Standard covers the general requirements and the test requirements for a flashing warning lamp for agricultural equipment.
CURRENT
2017-03-30
Standard
AS47643
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
CURRENT
2017-03-30
Standard
J2403DA_201703
This document is intended to supplement SAE J2403 by providing the content of Table 1, Table 2, and Table 3 from SAE J2403 in a form that can be sorted and searched for easier use. It is NOT intended as a substitute for the actual document, and any discrepancies between this Digital Annex and the published SAE J2403 document must be resolved in favor of the published document. This document provides the content of Table 1 and Table 2 published in SAE J2403 into the single table in the 'Term' tab, while the 'Recommended Term Definitions' tab provides the content of Table 3 in SAE J2403 and the 'Glossary' tab provides the content of Table 4 in SAE J2403.
CURRENT
2017-03-28
Standard
J3102_201703
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of the ambulance substructure, to support the safe mounting of an SAE J3027 compliant litter retention device or system, when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that to a great extent ensure the ambulance substructure meets the same performance criteria across the industry. Prospective manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
2017-03-22
WIP Standard
ARP6389
This ARP provides guidelines for improving the Failure Mode and Effect Analysis process, including alternative or additional methods, for flight critical actuation equipment electronics and software.
CURRENT
2017-03-22
Standard
J1286_201703
This method covers electric outboards that are rated in terms of static thrust.
CURRENT
2017-03-21
Standard
AS5714
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 27, and 29. Compliance with this specification is not considered approval for installation on any aircraft.
2017-03-20
WIP Standard
ARP6912
This Aerospace Recommended Practice (ARP) identifies and defines methods of compliance to power available and inlet distortion requirements for rotorcraft with Inlet Barrier Filter (IBF) installations. The advisory material developed therein may be used as acceptable methods of compliance for determining power assurance, establishing power available, and for substantiating acceptable engine inlet distortion for IBF installations. It is agreed to treat dust, ice, salt water & snow as contaminants to IBF for the purpose of establishing power available and distortion. Flight in known icing will be addressed in ARP6901.
Viewing 1 to 30 of 2770