Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 8947
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Improving fuel economy has been a key focus across automotive and truck industry for several years if not decades. In heavy duty commercial vehicles, the benefits from small gains in fuel economy lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG levels which closely translate to vehicle fuel economy. For current state of the art FE technologies, incremental gains are so small that they are hard to measure on an actual vehicle. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynos are used, however, there is an associated variability even with these tests due factors such as part to part differences, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus operated under steady and transient conditions respectively on real road equipped with and without CCRT (the same bus) fuelled with biodiesel blends BD10 (90% pure diesel and 10% biodiesel by volume) and BD0 (100% pure diesel) was tested and analyzed using electrical low pressure impactor (ELPI). Results showed that the particulate number-size distribution of BD10 had two peaks in nuclei mode and accumulation mode respectively except the condition of high speed, which was similar to BD0.
2017-03-28
Technical Paper
2017-01-0903
Sarp Mamikoglu, Jelena Andric, Petter Dahlander
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
2017-03-28
Technical Paper
2017-01-0401
Ye Yuan, Junzhi Zhang, Yutong Li, Chen Lv
Abstract As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
2017-03-28
Technical Paper
2017-01-0422
Guohong Zhang, Qianqian Xie, Shuwei Zhu, Yunqing Zhang
Abstract The sewing machine has been widely used in various aspects of life and it is essential to study its kinematic and dynamic characteristics. A dynamic model of flexible multi-link mechanism for sewing machine including joints with clearance is established to analysis its dynamic response in the present work. The configuration of the sewing machine mainly included five subsystems, feeding mechanism, needle bar mechanism, looper mechanism, shearing mechanism and adjusting mechanism. Since the sewing machine mainly consist of linkage mechanisms that are connected by revolute joints and translational joints, the existence of clearances in the joints and the flexibility of crankshafts and linkage are important factors that affect the dynamic performance. Even little clearance can lead to vibration and fatigue phenomena, lack of precision or even make overall behavior as random.
2017-03-28
Technical Paper
2017-01-0428
Tianqi Lv, Yan Wang, Xingxing Feng, Yunqing Zhang
Abstract Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
2017-03-28
Technical Paper
2017-01-0438
Zhenhai Gao, Tianjun Sun, Lei He
Abstract A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-1353
Michael G. Leffert
Abstract This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
2017-03-28
Technical Paper
2017-01-1185
Patrick Salman, Eva Wallnöfer-Ogris, Markus Sartory, Alexander Trattner, Manfred Klell, Helfried Müller, Axel-Oscar Bernt, Michael Martin, Knut Schiefer, Manfred Limbrunner, Johannes Höflinger, Peter Hofmann
Abstract The continuous increasingly stringent regulations for CO2 fleet targets request the introduction of zero-emission solutions in the near future. Moreover, additional customer benefits have to be generated in order to increase customer acceptance of zero-emission technologies. Actually high costs, reduced driving ranges and lack of infrastructures are some aggregative facts for end-customer acceptance thus also for a broad market launch. Plug-in hybrids as intermediate step towards zero-emission vehicles are meanwhile in series production with partly “zero-emission” operation mode and are well accepted by customers. The project partners HyCentA Research GmbH, Magna Steyr Engineering AG & Co KG, Proton Motor Fuel Cell GmbH and the Vienna University of Technology, Institute for Powertrains and Automotive Technology, have developed a hydrogen-powered zero-emission vehicle within a national funded research project.
2017-03-28
Technical Paper
2017-01-1180
Stefan Brandstätter, Michael Striednig, David Aldrian, Alexander Trattner, Manfred Klell, Tomas Dehne, Christoph Kügele, Michael Paulweber
Abstract The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
2017-03-28
Technical Paper
2017-01-0479
Soichi Hareyama, Ken-ichi Manabe, Makoto Nakashima, Takayuki Shimodaira, Akio Hoshi
Abstract This investigation describes a method for estimating the absolute lock effect in bolted joint. Observation results of loosening phenomenon in industrial vehicle are analyzed for the linear relation by the proposed regression formula. Based on the relation, in early stages of the development test, the rate of clamping force decrease can be estimated accurately after prolonged operation by measuring the clamping force behavior. The tendency to decrease is observed about the depression type and working load type loosening. For evaluation design bases, the residual clamping force estimation chart is established. The L-N (Loosening Lifetime - Number of Cycles to Loosening N) diagram is proposed for the loosening lifetime prediction for working load type loosening also. Using the loosening damage (cumulative decrease of clamping force) and L-N diagram, the lifetime to loosening failure can be predicted accurately for the locking device and method as an absolute evaluation.
2017-03-28
Technical Paper
2017-01-1187
Tatsuya Sugawara, Takuma Kanazawa, Naoki Imai, Yu Tachibana
Abstract This paper describes the motorized turbo compressor, which is a key technology for reducing the size of the fuel cell system for the Clarity Fuel Cell. The oxygen needed for fuel cell power generation is sent into the fuel cell by compressing the air from the atmosphere by a compressor. The conventionally used Lysholm compressor needed numerous sound absorbers, such as silencers and covers, to help achieve quietness when driving. Therefore, changing to a turbo compressor enhanced quietness and helped to eliminate or reduce the size of these auxiliary sound absorbers. Furthermore, a two-stage supercharging structure was used and the air pressure supplied to the fuel cell was increased to 1.7 times the previous air pressure. This increased the fuel cell power, which enabled to reduce the number of cells needed, and reduced the needed humidification amount which enabled to reduce the size of the humidifier. These enhancements helped to reduce the system size.
2017-03-28
Technical Paper
2017-01-1189
Tsuyoshi Maruo, Masashi Toida, Tomohiro Ogawa, Yuji Ishikawa, Hiroyuki Imanishi, Nada Mitsuhiro, Yoshihiro Ikogi
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell vehicles (FCVs) since 1992. As part of a demonstration program, TMC launched the FCHV-adv in 2008, which established major technical improvements in key performance areas such as efficiency, driving range, durability, and operation in sub-zero conditions. However, to encourage commercialization and widespread adoption of FCVs, further improvements in performance were required. During sub-zero operating conditions, the FC system output power was lower than under normal operating conditions. The FC stack in the FCHV-adv needed to dry the electrolyte membrane to remove unneeded water from the stack. This increased the stack resistance and caused low output power. In December 2014, TMC launched the world’s first commercially available FCV named the Mirai, which greatly improved output power even after start-up in sub-zero conditions.
2017-03-28
Technical Paper
2017-01-1188
Daisuke Hayashi, Atsushi Ida, Shota Magome, Takahisa Suzuki, Satoshi Yamaguchi, Ryosuke Hori
Abstract The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-1123
Jinyu Zhang, Yaodong Hu, Fuyuan Yang, Chao Xu
Abstract Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
2017-03-28
Technical Paper
2017-01-1145
Eric De Hesselle, Mark Grozde, Raymond Adamski, Thomas Rolewicz, Mark Erazo
Abstract Hybrid electric vehicles are continuously challenged to meet cross attribute performance while minimizing energy usage and component cost in a very competitive automotive market. As electrified vehicles become more mainstream in the marketplace, hybrid customers are expecting more attribute refinement in combination with the enhanced fuel economy benefits. Minimizing fuel consumption, which tends to drive hybrid powertrain engines to operate under lugging type calibrations, traditionally challenge noise, vibration, and harshness (NVH) metrics. Balancing the design space to satisfy the cost metrics, energy efficiency, noise and vibration & drivability under the hybrid engine lugging conditions can be optimized through the use of multiple CAE tools. This paper describes how achieving NVH metrics can put undesirable boundaries on Powertrain Operation which could affect other performance attributes.
2017-03-28
Technical Paper
2017-01-1355
Paul H. DeMarois, Bill Pappas, William G. Ballard, Jeffrey R. Williams, Gregory West
Abstract Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
2017-03-28
Technical Paper
2017-01-0509
Jyotishman Ghosh, Andrea Tonoli, Nicola Amati
Abstract This paper presents a novel strategy for the control of the motor torques of a rear wheel drive electric vehicle with the objective of improving the lap time of the vehicle around a racetrack. The control strategy is based upon increasing the size of the friction circle by implementing torque vectoring and tire slip control. A two-level nested control strategy is used for the motor torque control. While the outer level is responsible for computing the desired corrective torque vectoring yaw moment, the inner level controls the motor torques to realize the desired corrective torque vectoring yaw moment while simultaneously controlling the wheel longitudinal slip. The performance of the developed controller is analyzed by simulating laps around a racetrack with a non-linear multi-body vehicle model and a professional human racing driver controller setting.
2017-03-28
Technical Paper
2017-01-1186
Chunmei Wang, Shinichi Hirano
Abstract This study investigates a system and a method to enhance fuel cell vehicle robustness during vehicle start/stop cycle by mitigating cathode half-cell potential spikes. Multiple dynamic hydrogen reference electrodes were installed in the fuel cell under test to observe changes of anode and cathode half-cell potentials during simulated system startup and shutdown conditions. Multiple reference electrodes were used to measure localized anode and cathode half-cell potentials in an active area. A 1.4-1.8 V half-cell potential spike at the cathode in the startup condition was observed due to a hydrogen/air boundary formed within the anode flow field. Various system solutions have been studied to contain the cathode half-cell potential spikes, such as purging with inert gas, or inserting a shunt resistor as a shorting component between the anode and the cathode. In this study, a method of connecting an electrical load prior to flowing hydrogen fuel to the cell was tested.
2017-03-28
Technical Paper
2017-01-1593
Sunil kumar Pathak, Yograj Singh, Vineet Sood, Salim Abbasbhai Channiwala
Abstract A drive cycle is a time series of vehicle speed pattern developed to simulate real world driving conditions. These driving cycles are used for estimating vehicle on-road energy consumption, vehicle emissions, and traffic impact. Vehicle operating on fossil fuels are a significant source of air pollution, and these are being replaced by a small electrical vehicle in congested road traffic conditions, such as densely populated residential areas, near hospitals and market places, etc. The electrical vehicle run quieter and does not produce emissions like combustion engines. So far, there is no existing drive cycle officially developed for electric three wheelers which can represent real world driving pattern in India. In this study, 15 electrical auto rickshaws were driven by different drivers in various routes of a Tier II city of India and vehicle speed and time pattern were recorded using onboard Global Positioning System (GPS).
2017-03-28
Technical Paper
2017-01-1594
Guirong Zhuo, Kun Xiong, Subin Zhang
Abstract Micro electric vehicle has gained increasingly popularity among the public due to its compact size and reasonable price in China in recent years. Since design factors that influence the power of electric vehicle drive-motor like maximum speed, acceleration time and so on are not fixed but varies in certain scopes. Therefore, to optimize the process of matching drive-motor’s power, qualitatively and quantitatively studies should be done to determine the optimal parameter combination and improve the design efficiency. In this paper, three basic operating conditions including driving at top speed, ascending and acceleration are considered in the matching process. And the Sobol’ method of global sensitivity analysis (GSA) is applied to evaluate the importance of design factors to the drive-motor’s power in each working mode.
2017-03-28
Technical Paper
2017-01-0861
Balasubramanian N., Karthick Durairaj, Jayabalan Sethuraman
Abstract Asian countries hold a vast majority of the global two-wheeler population. Currently majority of these two wheelers are fueled by carburetors owing to their low cost and ease of maintenance. As these countries try to adopt emission norms similar to that of Euro 6 in a few years from now, they will be migrating to an injection system like port fuel injection (PFI), as it offers good control over emissions by using closed loop corrections, based on the exhaust lambda feedback. Stanadyne R&D has developed an innovative injection system that can be applied for such port fuel injection in two-wheelers. In this innovative design, the pump and injector are integrated into a single unit, making the system simple, compact and less expensive. The integrated injector uses a solenoid and spring arrangement, for pressurizing the fuel in a small chamber, and consumes less current. The pressurized fuel is then injected through orifice to produce spray in the intake port.
2017-03-28
Technical Paper
2017-01-0016
Don Zaremba, Emily Linehan, Carlos Ramirez Ramos
Abstract For over thirty years, the silicon power MOSFET’s role has expanded from a few key components in electronic engine control to a key component in nearly every automotive electronics system. New and emerging automotive applications such as 48 V micro hybrids and autonomous vehicle operation require improved power MOSFET performance. This paper reviews mature and state of the art power MOSFET technologies, from planar to shield gate trench, with emphasis on applicability to automotive electronic systems. The automotive application environment presents unique challenges for electronic systems and associated components such as potential for direct short to high capacity battery, high voltage battery transients, high ambient temperature, electromagnetic interference (EMI) limitations, and large delta temperature power cycling. Moreover, high reliability performance of semiconductor components is mandatory; sub 1 ppm overall failure rate is now a fundamental requirement.
2017-03-28
Technical Paper
2017-01-1672
Siddartha Khastgir, Gunwant Dhadyalla, Stewart Birrell, Sean Redmond, Ross Addinall, Paul Jennings
Abstract The advent of Advanced Driver Assistance Systems (ADAS) and automated driving has offered a new challenge for functional verification and validation. The explosion of the test sample space for possible combinations of inputs needs to be handled in an intelligent manner to meet cost and time targets for the development of such systems. This paper addresses this research gap by using constrained randomization techniques for the creation of the required test scenarios and test cases. Furthermore, this paper proposes an automated constrained randomized test scenario generation framework for testing of ADAS and automated systems in a driving simulator setup. The constrained randomization approach is deployed at two levels: 1) test scenario randomization 2) test case randomization.
2017-03-28
Technical Paper
2017-01-1682
Matthew von der Lippe, Mark Waterbury, Walter J. Ortmann, Bernard Nefcy, Scott Thompson
Abstract The FMEA and DV&PV process of developing automotive products requires identifying and repeatedly testing critical vehicle attributes and their response to noise factors that may impair vehicle function. Ford has developed a new automated scripting tool to streamline in-vehicle robustness testing and produce more accurate and repeatable results. Similar noise factors identified during the FMEA process are grouped together, condensed, and scripts are developed to simulate these noise factors using calibration parameters and vehicle controls. The automated testing tool uses the API of a calibration software tool and a graphical scripting interface to consistently simulate driver inputs with greater precision than a human calibrator and enable more sophisticated controls, which would have previously required experimental software builds.
Viewing 1 to 30 of 8947