Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 3245
2016-07-27
Standard
J1802/1_201607
This SAE Recommended Practice contains the reference information for SAE J1802.
2016-07-18
Standard
AIR4094A
This SAE Aerospace Information Report (AIR) supplies information on the flight control systems incorporated on various current and historic fixed wing, rotary wing, and tilt rotor aircraft. A brief description of the aircraft is followed by a description of the flight control system, some specific components, drawings of the internal arrangement, block diagrams, and schematics. System operation redundancy management is also presented.
2016-07-18
WIP Standard
J1067
This SAE standard establishes the minimum construction and performance requirements for seven conductor 1/8 1/10 5/12 cable for use on trucks, trailers and converter dollies. Where appropriate, the standard refers to two types of cables, (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications.
2016-07-12
WIP Standard
AMS1428/2
The foundation specification (AMS1428) and the category specifications (AMS1428/1 and AMS1428/2) cover deicing/anti- icing materials in the form of a fluid. 1.1.1 Foundation and Category Specifications The foundation specification establishes the requirements for all Type I deicing/anti-icing fluids and defines the terms Glycol (Conventional and Non-Conventional) and Non-Glycol and contains technical and other requirements that apply to both Glycol (Conventional and Non-Conventional) and Non-Glycol based fluids. The category specification AMS1428/1 covers Glycol (Conventional and Non-Conventional) based fluids whereas the category specification AMS1428/2 covers Non-Glycol based fluids. 1.2 Other Scope Requirements Other Scope requirements are set in AMS1428.
2016-07-12
WIP Standard
AMS1428/1
1.1 Form The foundation specification (AMS1424M) and the category specifications (AMS1424/1 and AMS1424/2) cover deicing/anti-icing materials in the form of a fluid. 1.1.1 Foundation and Category Specifications The foundation specification establishes the requirements for all Type I deicing/anti-icing fluids and defines the terms Glycol (Conventional and Non-Conventional) and Non-Glycol and contains technical and other requirements that apply to both Glycol (Conventional and Non-Conventional) and Non-Glycol based fluids. The category specification AMS1424/1 covers Glycol (Conventional and Non-Conventional) based fluids whereas the category specification AMS1424/2 covers Non-Glycol based fluids. 1.2 Other Scope Requirements Other Scope requirements are set in AMS1424M.
2016-07-12
Standard
AIR6237
The scope of this document is to provide review of recent history of loss-of-control accidents during airline revenue operations.
2016-07-06
Standard
ARP6259
This SAE Aerospace Recommended Practice (ARP) establishes design and qualification guidance for interior aircraft lighting replacement of incandescent, halogen, or fluorescent light with LED lights.
2016-07-01
Standard
J1865_201607
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5 inch, 22.5 inch, and 24.5 inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only, and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
2016-07-01
Standard
J2863_201607
This SAE Standard provides the minimum requirements for Automotive or RV, 7 Position, Self-Draining Trailer Tow Connector Interface. The procedures included within this specification are intended to cover the test methods, design, and performance requirements, of the electrical interface of the 7 position trailer tow connector in low voltage (0 to 20) road vehicle applications.
2016-06-30
Standard
J2270_201606
This SAE Standard covers both quality assurance and installation requirements for fasteners. This document establishes engineering criteria and guidance for quality assurance requirements (including Test and Inspection) for procurement of threaded fasteners where such criteria and guidance is not otherwise provided by existing fastener standards or specifications. The document also provides requirements and test procedures for self-locking fasteners including those manufactured by the installing activity. This document also provides requirements for the selection and use of fastener lubricants, additional corrosion protection treatments, fastener tightening procedures, and the use of thread-locking compounds.
2016-06-30
Standard
CPYM1_16MX800V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2016-06-30
Standard
CPYM1_16MX825V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2016-06-30
Standard
CPYM1_16MX775V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2016-06-30
Standard
CPYM2_16MX800V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-06-30
Standard
CPYM2_16MX825V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-06-30
Standard
CPYM2_16MX775V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
2016-06-30
WIP Standard
AS6554A
The purpose of this SAE Aerospace Standard (AS) is to standardize the basic design, performance and testing requirements for “Cargo Stoppers” cargo tie-down accessories to be used in conjunction with approved tie-down straps meeting AS5385C (TSO C-172) requirements.
2016-06-22
Standard
AIR1389B
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report.
2016-06-22
Standard
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable. NOTES: 1. Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard. 2. AS595 should be used for commercial aircraft hydraulic pumps. 3. This document should not be used for hydraulic pumps in Electro-Hydrostatic Actuator applications (EHAs).
2016-06-17
Standard
RB4A
A guide for the use by companies contracting for design of electronic products with the Department of Defense (DOD) and other government agencies. This Bulletin present concepts and techniques for quantifying electronic equipment reliability. The techniques are responsive to the requirements of various branches of the Department of Defense and are also useful with regard to other Government agencies (e.g., NASA).
2016-06-16
Standard
EMCB1_1
This EIA Bulletin No. EMCB1-1, "Historical Rationale for Military EM1 Limits", is presented by the Electronic Industries Association G46 Electromagnetic Compatibility Committee. It has been prepared to provide a reference source for electromagnetic compatibility practitioners to enable more knowledgeable application of EMI requirements in equipment and system specifications and designs.
2016-06-16
Standard
AS5391A
Accelerometers are transducers, or sensors, that convert acceleration into an electrical signal that can be used for airframe, drive, and propulsion system vibration monitoring and analysis within vehicle health and usage monitoring systems. This document defines interface requirements for accelerometers and associated interfacing electronics for use in a helicopter Health and Usage Monitoring System (HUMS). The purpose is to standardize the accelerometer-to-electronics interface with the intent of increasing interchangeability among HUMS sensors/systems and reducing the cost of HUMS accelerometers. Although this interface was specified with an internally amplified piezoelectric accelerometer in mind for Airframe and Drive Train accelerometers, this does not preclude the use of piezoelectric accelerometer with remote charge amplifier or any other sensor technology that meets the requirements given in this specification.
2016-06-16
WIP Standard
J2222
This SAE Standard establishes the minimum performance and endurance requirements for coiled electrical cables used for hookup between trucks, trailers and dollies. The component standards SAE J2394 (replaced SAE J1067) for cable and SAE J560 for connectors must be consulted to determine the complete performance and endurance requirements of the system. Related TMC Recommended Practices may be consulted for information associated with selection, installation and inspection of these coiled electrical cables. This document is intended to set out requirements for the majority of conditions rather than for specialized applications or environments.
2016-06-14
Standard
J1860_201606
This SAE Recommended Practice applies to those air brake system valves used to control the vehicle service brakes and test procedures defined by SAE J1859 to measure performance characteristics. This Recommended Practice adheres to standard industry practice of using English units for specifying valve characteristics.
2016-06-13
WIP Standard
AS6228A
This SAE Aerospace Standard (AS) covers the requirements and technical guidance for evaluation of life-cycle cost, productivity, and safety/health factors related to power hand tool selection. It applies approaches to selection of quieter and lower vibration hand-held powered tools, with optimal ergonomic features, for the prevention of Hand-Arm Vibration Syndrome (HAVS), hearing loss and repetitive motion injuries. It suggests use of noise and vibration data provided by vendors to be verified and supplemented by information available through the National Institute for Occupational Safety and Health (NIOSH) and European Union databases. Inclusion/exclusion of data in this document is not intended to imply that all of the products described herein are the only production models that meet this standard. Consumers are requested to consult with manufacturers concerning lists of stock production models that meet this standard.
2016-06-06
Standard
AS36100B
This SAE Aerospace Standard (AS) defines the minimum performance requirements and test parameters for air cargo unit load devices requiring approval of airworthiness for installation in an approved aircraft cargo compartment and restraint system that complies with the cargo restraint requirements of Title 14 CFR Part 25, except for the 9.0g forward ultimate inertia force of § 25.561 (b)(3)(ii).
2016-06-03
Standard
J2990/1_201606
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
2016-06-02
WIP Standard
J2836/5
This SAE Information Report J2836/5™ establishes the use cases for communications between Plug-In Electric Vehicles (PEV) and their customers. The use case scenarios define the information to be communicated related to customer convenience features for charge on/off control, charge power curtailment, customer preference settings, charging status, EVSE availability/access, and electricity usage. Also addresses customer information resulting from conflicts to customer charging preferences. This document only provides the use cases that define the communications requirements to enable customers to interact with the PEV and to optimize their experience with driving a Plug-In Electric Vehicle. Specifications such as protocols and physical transfer methods for communicating information are not within the scope of this document.
2016-06-01
WIP Standard
J2954
SAE TIR J2954 establishes an industry-wide specification guideline that defines acceptable criteria for interoperability, electromagnetic compatibility, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2 and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
2016-05-26
Standard
J2954_201605
SAE TIR J2954 establishes an industry-wide specification guideline that defines acceptable criteria for interoperability, electromagnetic compatibility, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2 and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
Viewing 1 to 30 of 3245

Filter