Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 17799
Technical Paper
2014-11-11
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Nowadays the challenge in design auxiliary device for automotive small engine is focused on the packaging reduction and on the increase of the performances. This requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.a. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat to flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses. A calculation procedure has been set up in order to consider all the necessary loads applied on the joint.
Technical Paper
2014-11-11
Sei Takahashi, Hideo Nakamura, Makoto Hasegawa
The International Standard ISO26262 “Road vehicles - Functional safety” was published in 2011. Safety is one of the key issues of future automobile development. System safety is achieved through a number of safety measures, which are implemented in a variety of technologies. ISO26262 provides an automotive-specific risk-based approach and uses ASILs to specify applicable requirements so as to avoid unreasonable residual risk. The International Standard ISO26262 divides the Automotive Safety Integrity Levels (ASIL) into four stages (from level A to D). In this paper we consider the suitable determination of the Motorcycle Safety Integrity Levels (MSIL) when the ISO26262 is applied to motorcycles. We will show that an unreasonable risk area for motorcycles becomes smaller when compared with that of an automobile for the following two reasons. (1) The seating capacity of a motorcycle is less than that of an automobile, and thus the damage from a motorcycle accident is also smaller than those of automobile accidents.
Technical Paper
2014-11-11
R Varunprabhu, Himadri Bushan Das, S Jabez Dhinagar
The steering system of a 3-wheeler vehicle comprises a single column steering tube. The steering inclination at handle bar end is converted to wheel slip or inclination by the steering column. A compromise in either ride or handling is considered in the functional requirement of the 3-wheeler vehicle. The three wheeled vehicle under study is designed for ride comfort and the handling levels are compromised. Variants of the vehicle under study are meant for public passenger transport requirements. Drivers’ ride comfort is considered as the primary functional requirement during design and driver’s steering fatigue is not given importance. For the comfort of driver, steering effort has to be less without compromise in handling characteristics. The driver of this type of vehicle drives the vehicle for 15-18 hours a day. Driver’s feedback suggests high steering effort as a human fatigue failure mode and also a cause of shoulder pain. In this project, a DC motor assisted steering mechanism with an electronic control module has been designed.
Technical Paper
2014-11-11
Kenichi Morimoto, Kenichi Tanaka
This study describes methods to explain the relationship between the motorcycle specifications and the shimmy phenomenon. Statistical approaches were used presuming the analysis being based on the multibody dynamics simulation having a high degree of freedom to precisely simulate actual motorcycle. There are a number of past attempts to clarify the relationship between the motorcycle specifications and the shimmy phenomenon. One of such efforts is based on the equation of motion. Although such a method is suitable when simply analyzing motions in a fundamental structure, when the number of degrees of freedom is large, generally a practical method cannot be found because it is extremely difficult to deriver an equation of motion. In the meantime, although the author et al. have analyzed shimmy using such multibody dynamics simulation models, the findings are useful only for simulation of performance difference among a number of motorcycles. In this study, we conducted researches taking three steps; (1) extract factors significantly affecting shimmy from motorcycle specifications, (2) explain how a change of motorcycle specifications affects shimmy, and (3) measure performance of a number of motorcycles having various specification.
Technical Paper
2014-11-11
Kazuhiro Ito, Yoshitaka Tezuka, Atsushi Hoshino, Keita Sakurada
The frame body of a motorcycle is a core part that receives force from the road via the front and rear suspensions as well as holding heavy objects such as the engine. It is therefore important to finish fundamental design in the early stage of product development. Regarding the strength of frame body, if the load input to the frame body under the hardest condition like on rough roads can be estimated by simulation, an appropriate frame body design in the early stage of development would be possible. Some techniques have been recently introduced to estimate input loads and/or fatigue strength by the full vehicle simulation to analyze the automobile running on rough roads. In motorcycles, meanwhile, there are some cases with making on the test bench of strength and/or durability tests, and conversion of such tests to CAE simulation. However, there are only a few cases with estimating input loads when running on rough roads. One of the reasons is that it is difficult to accurately estimate suspension motions, especially the motions of telescopic front suspension taking into account the motion in the bending direction.
Technical Paper
2014-11-11
Patrick Falk, Christian Hubmann
KEYWORDS – Driveability, Motorcycle, Measurement, Powertrain, Quality ABSTRACT - Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also know as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
Technical Paper
2014-11-11
Daniele Barbani, Niccolò Baldanzini, Marco Pierini
Motorcycle accidents are a serious road safety issue in the European Union (EU). Several projects to increase motorcycle safety were funded by the EU within the FP7 (Seventh Frame Program). Many others are likely to be funded within H2020 (Horizon 2020) as well as by national projects of each member state. In this context, numerical simulations play a strategic role since they can be a powerful tool to simplify, assist and speed up the work of the engineers. During the last years, the authors have presented the development and validation of FE models for complete crash test scenarios (i.e. motorcycle with an anthropometric test dummy that impacts against a car) and their use to evaluate head and neck injuries. During the validation phase the authors observed some variability in the results. While variability of the input parameters is a fact in real world crash test, the extent of the variability in the results has to be estimated and assessed in order to improve the design process of safety devices.
Technical Paper
2014-11-11
Federico Giovannini, Niccolò Baldanzini, Marco Pierini
The Powered Two-Wheelers (PTWs) control is more complex than any other road vehicle control, due to the implicit instability of those vehicles. Maneuvers such as braking or swerving, require additional driving abilities to prevent the vehicle from falling, in particular during emergency events, such as panic braking or last second swerving. Focusing on emergency braking maneuvers, in those situations the PTW control is very demanding due to the necessity to adjust the braking intensity in the best way. For standard PTWs, a common cause of accident is the loss of adherence and the consequent loss of stability due to emergency braking manoeuvers. It is worth noting that, for a PTW, the loss of stability means a high probability of fall, especially while cornering. Accordingly, the aim of this study is to propose and evaluate a fall detection algorithm for PTWs performing braking manoeuvers, developed to alert an advanced riding assistance system in order to produce proper counteractions against the imminent fall.
Technical Paper
2014-11-11
Maki Kawakoshi, Takashi Kobayashi, Makoto Hasegawa
Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). On application to motorcycles of ISO26262 that was intended only for passenger cars, it is considered that it is desirable to estimate the C class by subjective evaluation of expert riders. Expert riders are professional test riders, and they differ from ordinary riders. They can ride safely and evaluate the motorcycle performance stably even if the test condition is at the limit of vehicle performance. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of expert riders and of ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders.
Technical Paper
2014-11-11
T Manikandan, S Sarmadh Ameer, A Sivakumar, Samaraj Dhinagar
The proposed paper is on electrical energy conservation in a two wheeler. Electrical energy generation adds a maximum of 10% excess load torque on an engine and hence saving electrical energy would ultimately reduce the consumption of fuel. Load Control Module is a single intelligent device which is placed in between electrical energy generation and consumption. The Module controls and distributes energy to the corresponding loads depending on parameters like battery voltage, engine RPM, overhead light illumination levels and load usage time. The Module prioritizes battery charging for maintaining the life of the battery. The Module has a microcontroller and it is programmed with algorithm for prioritization and energy distribution with respect to input conditions. A vehicle fitted with the Load Control Module was tested in city driving cycle (CDC) condition as per ARAI (Automotive Research Association of India) standard and it was found that the electrical loading decreased to about 30% when compared to vehicle with uncontrolled loading.
Technical Paper
2014-11-11
T Manikandan, S Sarmadh Ameer, A Sivakumar, Davinder Kumar, R Venkatesan, VenkataKalyana Kumar
The proposed paper is on advanced vehicle information panel which shall display instant mileage zone in which the user is operating with inputs from engine crank sensor and vehicle speed sensor alone. And moreover, gear assistance and throttle assistance through visuals is provided. Mileage data for different engine loading at different Speeds is pre-calculated at standard conditions and fed into a micro-controller. In real time, the engine loading, by means of intelligent software, is sensed by engine crank sensor and based on the pre-fed value, the mileage zone of the vehicle at that particular instant is to be displayed using an information panel. Based on the relation between speed sensor and engine crank sensor when the vehicle is running, the gear in which the vehicle is running is to be calculated. For a vehicle running in a certain gear and in certain speed, the ideal engine loading and mileage zone is predefined. So when the user is riding in a certain gear with certain engine load, the micro controller compares that with the programmed data which is the ideal condition data, and assists the user, in case the rider is not riding the vehicle as per the ideal data, by gear up/down prompt or throttle up/down prompt by means of the said information panel.
Technical Paper
2014-10-13
Fuyuan Yang, Lei Du, Changsheng Yao, Jiaen Du, Ping Yu
The efficiency of traction motor affects the overall efficiency of city buses which most of time creep among jammed city traffic. The low speed and torque operating condition deviate from the high-efficiency region of electric motor. This paper discusses whether it is possible to improve the motor efficiency by a two-speed transmission and if so, to what extent. In this paper, based on the China Bus Urban Cycle, an 8-meter electric bus is studied, and the comparison of motor efficiency between two different configurations is made: direct drive and drive through a two-speed transmission. In the ‘direct drive’ configuration, the traction motor drives the main reducer directly, while in the other configuration installed a two-speed transmission between. Apart from that, all other specifications are the same. The study is conducted via modeling and simulation in Matlab/Simulink environment. In the simulation of both configurations, models of driver, traction motor, two-speed transmission, the I-curve of braking forces distribution and vehicle controller are built.
Technical Paper
2014-10-13
Stefan Geng, Thomas Schulte
Hybrid electric powertrains are developed for reducing the fuel consumption and the emission of carbon dioxide. In order to achieve a reduction in comparison to conventional vehicles, an improved efficiency of the overall system is required. It depends on the powertrain topology, its components and the applied control strategy. For testing and improving the control strategy in terms of the overall system efficiency, Hardware-in-the-Loop (HIL) simulation can be applied. Thereby, a real-time simulation of the powertrain is used to emulate the behavior of the actuator and sensor signals in order to operate the corresponding electronic control units in a virtual test environment [1], [2]. The development of real-time capable powertrain models is a time-consuming task, due to high dynamics and switching frequencies of the electrical subsystem, comprising the electric drive, inverter and battery and due to the immense diversity of powertrain configurations, comprising the transmission, the combustion engine, the electric drives, etc.
Technical Paper
2014-10-13
Abdelmajid Ait Taleb, Ali Chaaba, Mohamed Sallaou
In the field of machinery, epicyclic gear trains play a fundamental role in power transmission lines. Their use is very wide and varied and they can realize the function of a mechanism as a “differential" or as a mechanism to reduce or increase speeds. For example, the epicyclic gear trains equip a large number of vehicles transmission such as electric and hybrid cars and heavy vehicles, these epicyclic gear trains are integrated especially in continuously variable power split transmissions. The mechanical efficiency assessment of transmissions integrating one or more epicyclic gear trains requires the knowledge of the efficiencies of components setting up the transmission, in particular that of the epicyclic gear trains. The efficiency of these mechanisms is commonly defined as the ratio of the output power by the input one. For a planetary gear train with three active shafts, which operates as a differential system, the definition of the efficiency will not change, but, it is necessary first to identify the powers flow running between its links.
Technical Paper
2014-10-13
Gerhard Kokalj, Patrick Schatz, Christoph Zach
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required. The functional variability of hybrid technology, however, permits a range of possible implementations and the control calibration tasks themselves need to be well structured concerning hand-over, traceability and robustness.
Technical Paper
2014-10-13
Jonathan Hall, Hannes Marlok, Michael Bassett, Marco Warth
In 2012 MAHLE Powertrain unveiled a range-extended electric vehicle (REEV) demonstrator, which is based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has logged vehicle data in real world driving situations with the aim of understanding the actual usage a REEV under non-laboratory test conditions. The vehicle is instrumented with a data acquisition system to measure physical parameters, for example coolant temperatures, as well as CAN-based data from the engine and vehicle management systems. The logged data has been analysed, using in-house tools, to establish the effect of environmental factors such as ambient temperature, human behavioural characteristics and variation in usage patterns on the efficiency and operational behaviour of the REEV system as a whole.
Technical Paper
2014-10-13
Boru Jia, Zhengxing Zuo, Huihua Feng, Guohong Tian, A. P. Roskilly
Free-piston engine generator (FPEG) is a novel type of energy conversion device, which integrates a linear combustion engine and a linear electrical machine into a single unit. As an alternative to conventional engines, FPEG is a promising power generation system due to its simplicity and high thermal efficiency and has attracted considerable research interests recently. This paper presents the development for a spark-ignited free-piston engine generator prototype which was rated to 3kW power output, and the designation of major sub-systems is introduced. The electrical linear machine is operated as a linear motor to start the engine and switched to a generator after successful ignition. Closed-loop control strategy was investigated and implemented for the starting process with a constant force provide by the linear machine. Ignition is one of the most crucial problems for the generating process, thus a unique control sub-system to generate ignition signals at the correct ignition timing based on the piston position was completed.
Technical Paper
2014-10-13
Hyunsup Yang, Kyung Seok Cho, Chi Yong Park, Dae Bok Keon, Chang Ha Lee, Yong Sun Park
Fuel Cell Electric Vehicles (FCEV) is zero emission vehicles because it produces only water as a byproduct. The other advantages are a long driving range and a quick refueling time compared with the pure electric vehicle. The air compressor supply compressed air to the cathode of fuel cell stack to chemically react with the hydrogen from the compressed hydrogen tank to generate electric power. The majority of the companies have used displacement type screw compressor for their current and next generation air supply systems. The screw type air compressor was used for the supercharged internal combustion engines. Screw type air compressor has some advantage in increasing pressure ratio but it has disadvantage in NVH (Noise, Vibration and harshness), efficiency and productivity. Among them NVH is the greatest factor that inhibits the marketability of FCEV because it has no noise source such as internal combustion engine. Because of that, the screw type air compressor should have very expensive noise cover and muffler for the reducing of the pressure fluctuation to improve NVH level.
Technical Paper
2014-10-01
Sermet Yucel, Melinda Moran Lucking, Jon Magnuson, Germana Paterlini, Benjamin Worel
Fuel economy and performance vary significantly with the vehicle design and configuration, road profile, and payload. The variation is more pronounced for heavy-duty trucks and understanding its origin is critical to maximizing fleet profitability. In this paper we demonstrate a method to continuously estimate fuel consumption breakdown over resistive forces while the vehicle is driven on a public highway. The method is fast, cost-effective, and capable of analyzing trip segments as short as one second. The method utilizes a non-linear Kalman filter and a vehicle dynamical model that has a coupled longitudinal and vertical motion. The paper presents the breakdown of fuel consumption and an estimate of road grade profile obtained by driving a heavy-duty vehicle at the MnROAD research facility in Albertville MN. The road grade profile of the high-volume segment on Westbound Interstate 94 and the fuel consumption breakdown of the MnROAD heavy-duty test truck were estimated from recorded Control Area Network (CAN) signals and known vehicle parameters.
Technical Paper
2014-09-30
Dhiraj Dashrat Salvi
Braking system is having a key importance in vehicle safety & handling stability. In this research paper I had developed a circuit model of Antilock braking system where the operating medium is hydro-pneumatic. A solenoid operated modulator valve consisting of two 2/2 valves is connected in line with the air cylinder & hydraulic master cylinder assembly. Using methodology of response time calibration time taken to modulate hydraulic pressure against pneumatic pressure is evaluated. The signal input to the modulator valve is given by the Electronic controlled unit (ECU). All results obtained is exported to an excel file using Data Acquisition software with pressure myograph system. It gives easy and intuitive readings based on the signal program from ECU for various inputs (i.e. ramp, step). The signals are program for various inputs in order to check the fidelity of the circuit. These readings are easily customized to get the optimum graphs. The response time evaluated from the calibrated data is compared with benchmark or standard set by central motor vehicles rules (CMVR) to meet the regulation.
Technical Paper
2014-09-30
Dong Zhang, Changfu Zong, Ying Wan, Hongyu Zheng, Wei-qiang Zhao
Abstract Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time. In the multiple targets stability control algorithm, a simplified vehicle model, a Kalman filter estimator and an Adaptive Kalman filter estimator of heavy duty vehicles are built, by which the parameters and states can be estimated successfully.
Technical Paper
2014-09-30
Masahiro Akei, Takayuki Koizumi, Nobutaka Tsujiuchi, Takayuki Yamauchi
Abstract This paper describes a prediction of vibration and the transfer path analysis (TPA) using an engine multi body dynamics (MBD) model and measured frequency response functions (FRFs). TPA is used in order to analyze each contribution of vibration transfer paths. In the TPA, input forces from vibration source to passive part should be identified accurately. In the traditional TPA, an identification of input forces is done using only experimental results. Therefore, a parametric study to an improvement of a structure or an isolation system is impossible. In this study, the MBD model of engine is constructed, and input forces from engine to mainframe of agriculture machine are predicted. The accuracy of prediction is confirmed, compared with the results from the traditional TPA method. The contribution of each transfer path is analyzed, and the vibration levels of operator position are predicted using the measured FRFs and the simulated input forces. As a result, the input forces and the vibration levels of operator position can be predicted accurately.
Technical Paper
2014-09-30
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Abstract Road train vehicles have been applied as one of the common and efficient ways for transportation of goods, specifically hazardous liquid cargos, in different nations. These vehicles have a wide variety of lengths and towing systems such as the fifth wheel or the dolly draw-bar. Based upon specific regulations, they could be authorized to move on specific roads. In order to avoid hazard and danger in case of accidents, safety performance of a B-train vehicle as a specific type of road train vehicles is investigated in this paper. A Multi-Body Dynamic (MBD) model, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in the initial phase of the study. The developed dynamic model is capable of simulating required tests as well as the SAE lane change, along with a constant radius turn for the purpose of roll and yaw stability analysis and safety evaluation. The effects of variation of the fluid fill level are considered in this research. The trammel pendulum concept is adopted for simulation of fluid movements, known as sloshing, in two articulated tankers of the model.
Technical Paper
2014-09-30
Antoine Delorme, Jason L. Robert, William Eli Hollowell, Andre M. Strobel, Jason T. Krajewski
Abstract In the recent years, Automated Manual Transmissions have become more popular for class 8 heavy trucks. Besides the benefits of smoother gear changes and reduced driver fatigue, AMTs can also greatly reduce fuel consumption by using optimized shifting strategies and advanced controls. The Detroit DT12 AMT demonstrated its ability to save fuel over a standard AMT, due in part to its eCoast feature. eCoast relies on intelligent and advanced electronic controls to safely allow the vehicle to coast on downgrades. While the engine is idling, the drag parasitic energy losses are decreased and the vehicle can fully use its momentum to travel further up and down hill. As one could expect, the type of route profile can greatly affect the fuel savings due to eCoast, since more hilly terrains might offer more opportunities to activate eCoast than flatter roads. In addition, when combined with different vehicle and driving parameters such as vehicle weight and driver desired cruise set speed, the fuel consumption reduction of eCoast is always there, but becomes a more complicated function.
Technical Paper
2014-09-30
Hiroyuki Ishizaka, Kazuo Tanaka, Motoyasu Tanaka, Yusuke Tanaka
Abstract For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
Technical Paper
2014-09-30
Michael P. Lammert, Jonathan Burton, Petr Sindler, Adam Duran
Abstract This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P10HH hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The New York City Composite cycle, the City Suburban Heavy Vehicle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory.
Technical Paper
2014-09-30
Yang Li, JianWei Zhang, Konghui Guo, Dongmei Wu
Abstract This paper presents a torque distribution algorithm to improve the energy efficiency of four-wheel-drive (4WD) electric vehicles with PMSM hub motors. In order to optimize the torque distribution method, at first the motor model considering the affect of iron loss and the loss model of multi-motors drive system of 4WD electric vehicle with PMSM hub motors, which operate at straight-line condition, are established. Besides, realize the online identification of motor parameters based on the MARS, which is important for updating the loss model parameters of the motor drive system. By doing this, the ideal torque distribution ratio can be obtained from the loss model in real-time. The simulation result using different distribution algorithms shows that the optimized torque distribution algorithm based on the loss model can be useful for improving the energy efficiency.
Technical Paper
2014-09-30
Ilya A. Kulikov, Elena E. Baulina, Andrey I. Filonov
Abstract The paper gives a short description of the University's developments in the field of hybrid electric powertrains and vehicles as well as a survey of theoretical instruments utilized in these works for elaboration of powertrains control strategies. At the present, two units fitted with hybrid powertrains are in operation. These are the four-wheel-drive SUV and the powertrain test rig. Both allow to test different powertrain configurations. Prior to implementing a certain configuration in the rig, a theoretical research of powertrain is conducted to reveal its properties and find a way to control it optimally. The basic tool adopted for that purpose is R.Bellman's dynamic programming (DP). The paper gives an example of applying DP to explore a potential of decreasing fuel consumption and pollutant emissions of a light commercial vehicle by converting its powertrain into hybrid one. During this study, a contradiction has emerged between minimizing fuel consumption and emissions of NOx.
Technical Paper
2014-09-30
Yang Li, JianWei Zhang, Konghui Guo, Dongmei Wu
Abstract This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
Technical Paper
2014-09-30
Linlin Wang, Hongyu Zheng
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads. The simulation results shows that the algorithm can control the wheels' slip-rate changing in the settled range and shorten the braking time, thus improves braking performance of tractor/trailer combination vehicle.
Viewing 1 to 30 of 17799