Criteria

Text:
Display:

Results

Viewing 1 to 30 of 19305
2016-11-08
Technical Paper
2016-32-0074
Pradeep Ramachandra, Manohar Halahali, Prashanth Anantha
Personal mobility is evolving in the emerging markets, where the primary need for transportation is predominantly met with two wheelers. This reflects on the annual production volumes, which is forecasted to reach 145 million units by 2021. Around 28% of this volumes belong to electric 2wheelers from China and the remaining are predominantly ICE (Internal Combustion Engines). With the regulators across the globe enforcing stricter emission norms in order to improve the air quality, there is a need for technology to evolve towards harnessing the best energy efficiency using multiple topologies. However, considering that the majority of the 2 wheelers are used by middle and lower income groups, it is imperative that efficient topologies need to be made available at affordable costs. The authors attempt to decipher this need for personal mobility coupled with the stringent regulations.
2016-11-08
Technical Paper
2016-32-0078
Mark R. Mataczynski, Paul Litke, Benjamin Naguy, Jacob Baranski
Aircraft engine performance is degraded with increasing altitude according to the resultant reduction in air pressure, temperature, and density. One way to mitigate this problem is through turbo-normalization of the air being supplied to the engine. Supercharger and turbocharger components suffer from a well-recognized loss in efficiency as they are scaled down in order to match the reduced mass flow demands of small-scale Internal Combustion Engines. This is due in large part to problems related to machining tolerance limitations, such as the increase in relative operating clearances, and increased relative blade thickness. As Internal Combustion Engines decrease in size, they also suffer from efficiency losses owing primarily to thermal losses. This amplifies the importance of maximizing the efficiency of all sub-systems in order to minimize fuel consumption and enhance overall aircraft performance.
2016-11-08
Technical Paper
2016-32-0060
Ashish Jain, Sahil Kapahi
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the powertrain is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUM Lap software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modelled using 1D simulation on RICARDO Wave.
2016-11-08
Technical Paper
2016-32-0056
Qi-Jun Huang, Chia-Hong Chung, Yong-Fu Syu, Yuh-Yih Wu, Chao-Kai Li
Butanol is deemed as a potential alternative fuel for motor vehicle, but there are few studies about applying butanol in engine combustion. This paper focuses on application of butanol-gasoline blend fuel on scooter engine. In this research, different volume percentage of butanol-gasoline blend fuel, B10, B20, B40, B60, B80 and B100 are applied on 125cc scooter engine to conduct engine experiment, and higher than B60 blended fuel is declared as high concentration of butanol blended fuel. The test conditions are set at 4000 and 6000rpm under partial load and full load. After executing engine experiment, the engine performance, brake specific fuel consumption (BSFC), emissions and combustion analysis are discussed. Furthermore, viscosity and fuel spray test are carried out with high concentration of butanol. The engine experimental result shows that B20 fuels can increase engine performance under engine 4000 and 6000rpm.
2016-11-08
Technical Paper
2016-32-0079
Daisuke Fukui, Yoshinari Ninomiya
With the remarkable rise of gas price and the global air pollution, measures to improve fuel efficiency and reduce emission have become the urgent need in the motorcycle industry following automobile. For the improvement of the engine thermal efficiency that is one of those problems, there is a well-known fact that various research and development are continued from the past. We recognize that the coexistence of the high mobility and fuel efficiency performance of the Community-Based small motorcycles are demanded in the developed country not only developing countries. And we recognize that the coexistence of driveability and emission control of recreation and sports motorcycles is demanded. However, in the development of the engines for small motorcycles, due to differences in engine speed range, emission control, cost, infrastructure, we need some different approaches from the automobile engines which are full of advanced technologies.
2016-11-08
Technical Paper
2016-32-0018
Mrinmoy Kalita, Murugesu Muralidharan, Masilamani Sithananthan, Muthan Subramanian, Yogesh Kumar Sharma, Bhuvenesh Tyagi, Sarita Garg, Ajay Kumar Sehgal, Shankara Sri Venkata Ramakumar, Ramadoss Suresh
Indian Two-Wheeler Industry is the largest in the world with the annual growth rate more than 10percent year after year. More than 60% of gasoline production in India is consumed by two wheeler segment. Ever rising fuel demand and global concern on climate change have focused to develop energy efficient and eco-friendly vehicles. Several techniques such as engine design, efficient transmission and use of better quality of fuels and lubricants are applied world over to improve the efficiency of the vehicles. Low viscosity engine lubricant is one of the approaches which can be easily applied for better fuel economy. The lubricant requirement of motorcycles differs from that of passenger cars. The motorcycle engine oil is subject to both engine as well as wet clutch transmission system which operate under severe conditions.
2016-11-08
Technical Paper
2016-32-0008
Balagovind Nandakumar Kartha, Srikanth Vijaykumar, Pramod Reddemreddy
Today, nations are in the path of low-emission transformation mandating stricter emission norms with periodic revisions. With the expected introduction of Bharath Stage VI (BS VI) for two wheelers in India by 2020, limitation in primary pollutants namely - Carbon Monoxide (CO), Total Hydro-Carbons (THC) and Nitrogen Oxides (NOx) are reduced by 50%, 75% and 85% respectively in comparison to the existing Bharath Stage IV. The original equipment manufacturers (OEMs) are identifying measures to improve the overall efficiency and raw emissions from the engine through strategies like multi-spark configurations, improved charge induction concepts, liquid cooling, lean combustion etc. With end user demands for performance, low end torque, high power to displacement ratio, quick acceleration and fuel efficiency, the balance with the emission regulation is expected to be challenging.
2016-11-08
Technical Paper
2016-32-0019
David Weiss
In the early 1980's, some promising research and development efforts focused on powder metallurgy revealed that aluminum alloys containing 4 wt% cerium exhibit high temperature mechanical properties exceeding those of the best commercial aluminum casting alloys currently in production. Cerium oxide is an abundant rare earth oxide that is often discarded during the refining of more valuable rare earths such as Nd and Dy. Therefore, the economics are compelling for cerium as an alloy additive. Aluminum-cerium alloy components prepared via hot pressing and forging exhibited tensile strengths of 43 ksi at 450°F. This compares to typical tensile strengths of 10-26 ksi for Al-Cu and Al-Mg-Zn systems at that temperature.
2016-11-08
Technical Paper
2016-32-0025
Govardan Daggupati, Bapanna Dora Karedla, Chandan Bansilal Chavan, Gagandeep Singh Risam
In two wheelers the front suspension system is mounted on chassis by two steering bearings which are lubricated ball type angular contact bearings with significant radial force components. These bearings are designed to withstand maximum vehicle loads for target durability. Maximum load carrying capacity depends on the number and size of the balls, bearing size and material. For target durability with designed load carrying capacity, the ball contact pressure, bearing preload plays a major role as compared to other design parameters. Geometry parameters and maximum load defines contact pressure for given bearing design. But in two wheelers due to nature of usage and road conditions, the peak loads are dynamic and geometry based design calculations may not yield the most optimal bearing design. In this work the bearing ball race profile design is optimized by using dynamic bearing contact profiles by using nonlinear Finite Element Analysis.
2016-11-08
Technical Paper
2016-32-0026
Meichun Peng, Jiahao Wang, Jiaru li
In order to reduce fuel consumption of the HONDA Energy Saving Race car, by analyzing the driving characteristics, the road condition of track and racing rules, a fuel consumption model of racing car was developed based on automobile kinematics theory. The model was applied to study the eco-driving scheme which was mainly focused on optimizing design of throttle opening and the speed range of acceleration and deceleration based on the racing track condition. Several eco-driving schemes ware proposed, and it is gotten the optimum results which is the engine throttle opening is controlled at 60% to 80%, and the vehicle speed is remained in 5 to 65km/h when acceleration and deceleration. In addition, the racing car should coast in neutral fully within the allowable running time by the racing rules. The eco-driving scheme was described in driving cycle and input into the vehicle fuel consumption simulation model developed, and calculated the average fuel consumption.
2016-11-08
Technical Paper
2016-32-0029
Shohei Suzuki
In the development of motocrosser, the parts which compose the vehicle body especially in the frame receive the heavy loads when it lands on the ground, and high stress generate. Therefore, some problems such as deformation, crack emanating, brocken damage, etc occur occasionally. It took times and costs to take measures for these problems. To solve these problems and to reduce the development term and costs, we developed the method of Jump Landing Simulation. This Jump Landing Simulation enables to measure the vehicle position, which is moving momentarily, easily with high accuracy by introducing "Image Position Measureing Method.". Also, it succeeded to predict the occuring stress with high accuracy.
2016-11-08
Technical Paper
2016-32-0031
Paul W. Rieger, Christian Zinner, Stephan Schmidt, Stefan Hausberger
The release of the “Regulation Nr.168/2013”, for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles, of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (Euro 6) and motorcycles (Euro 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. Within the development phase the selection of a useful hybridization-level is a very essential part. CAx methods and numerical simulation methods are useful tools during the research and development phase of motorcycles.
2016-11-08
Technical Paper
2016-32-0032
Andrew Bejcek
In the process of developing small general purpose engines, it is necessary to obtain accurate engine usage information. Commercially available measurement systems created for this purpose have unfavorable characteristics, including limited flexibility and large physical size. A compact data logging device was developed to overcome these limitations, and it was used on several lawn mowers. A microcontroller controls the data logger and acquires data. The data logger also includes a vacuum pressure sensor, tachometer input, thermocouple inputs, and a GPS (Global Positioning System) receiver. The GPS receiver is used to provide machine position and velocity data, which is synchronized with the other measurements. The housing is compact (54mm x 124mm x 100mm), so it can be mounted on most small engine-powered products. Setup of the data logger requires no significant engine or machine modifications, which reduces the time required to instrument a product for testing.
2016-11-08
Technical Paper
2016-32-0039
Andrea Fioravanti, Giovanni Vichi, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari
In recent years, the motorcycle muffler design are moving to dissipative silencer architectures. Indeed due to the increase of restrictions on noise emissions both dissipative and coupled reactive-dissipative mufflers, thanks to their higher noise efficiency coupled with a size reduction, have substituted the reactive silencers. A dissipative muffler is composed by a perforated pipe that crosses a cavity volume that is usually filled by a fibrous porous material. The acoustic performance of this kind of muffler are strictly dependent on the porosity of the perforated pipe and the flow resistivity of the porous material. The interaction between these elements and the mass flow rate of gas passing through the silencer influences the muffler performance.
2016-11-08
Technical Paper
2016-32-0042
Bhaarath Rajagopal Jeyapaal, Vamsi Krishna, Kannan Marudachalam
Vibrations have become an increasingly important attribute for determining the quality of automotive products. Particularly, this becomes more acute in the case of tactile vibrations of powered two-wheeler – motorcycles and scooters. This paper deals with vibrations of a scooter vehicle. Scooters are normally a two-wheeler with a four stroke single cylinder spark ignited engine. Vibrations of a scooter are mainly caused by the inertial imbalance forces of the engine, combustion forces and road undulations. Vibrations due to road undulations are mostly reduced by toggle link mechanism, resilient mounts of the engine and the shock absorbing suspension of the frame. The power train assembly is designed in such a way that the inertial imbalance forces in the power train assembly are distributed at a required angle called the ellipse angle.
2016-11-08
Technical Paper
2016-32-0053
Hisato Tokunaga, Kazuhiro Ichikawa, Takumi Kawasaki, Akiyuki Yamasaki, Tatsuo Ichige, Tomoyuki Ishimori, Yoichi Sansho
Owing to the recent developments in sensors with reduced size and weight, it is now possible to install sensors on a body of a motorcycle to monitor its behavior during running. The analysis of maneuverability and stability has been performed based on the data resulted from measurements by these sensors. The tire forces and moments is an important measurement item in maneuverability and stability studies. However, the tire forces and moments is difficult to measure directly, therefore, it is a common practice to measure the force and the moment acting on the center of the wheel. The measuring device is called a wheel forces and moments sensor, and it is widely used for cars. The development of a wheel forces and moments sensor for motorcycles has difficulty particular to motorcycles. First, motorcycles run with their bodies largely banked, which restricts positioning the sensors.
2016-11-08
Technical Paper
2016-32-0054
Barath Mohan, KVM Raju, Sai Praveen Velagapudi, Chandramouli Padmanabhan
Tires influence the dynamic performance of the motorcycle and the development of tires to meet these requirements has always been one of the critical and challenging tasks for the motorcycle industry. The tire characteristics and rest of the motorcycle design need to be tuned extensively to achieve the desired performance and this work requires estimating tire force characteristics upfront. The aim of this study is to develop feasible test methods to measure the lateral force characteristics of motorcycle tires. This work is an extension of our previous work on estimating the longitudinal forces of motorcycle tires. In this work, new experimental procedures are developed to estimate the friction ellipse and lateral stiffness characteristics of motorcycle tires. A fairly accurate tire model is developed using the measured lateral force characteristics.
2016-11-08
Technical Paper
2016-32-0057
Yuji Arai, Makoto Hasegawa, Takeshi Harigae
ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Levels) in order to avoid unreasonable residual risk caused by malfunctioning behavior of safety-related electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
2016-11-08
Technical Paper
2016-32-0075
Srikanth Setlur, Satish Vemuri, Chithambaram Subramoniam, Rahul Sharma
The effect of ethanol blended gasoline fuels on Vehicular mass emissions was investigated on a spark ignited single cylinder Closed Loop fuel injected vehicle complying Euro III emission norms. Fuels blended with 10(E10) & 20(E10) percentage by volume of ethanol were taken up to study their effect on vehicular mass emissions on World Harmonized Motorcycle Test Cycle (WMTC) without any modification to the vehicle. The cycle is a simulation of real world driving conditions. In WMTC Cycle, maximum CO emissions were obtained with E10 fuel which showed an increase of 13%. THC emissions decreased by 10% and NOx emissions remained the same when the ethanol blend increases. Fuel economy decreases by 5% with use of E20 on the cycle.
2016-11-08
Technical Paper
2016-32-0076
Rahul Sharma, Srikanth Setlur, Satish Vemuri, Chithambaram Subramoniam
The effect of ethanol blended gasoline fuels on vehicle emissions was investigated in a spark ignited single cylinder carbureted vehicle meeting Bharat Stage III (BS III) emission norms. The effect of fuel blended with 10(E10) & 20(E20) percentage by volume of ethanol; was studied on vehicular mass emissions on World Harmonized Motorcycle Test Cycle (WMTC) as well as on Indian drive cycle (IDC) without any modifications on the vehicle. These cycles are simulation of real world driving conditions. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and increases leaning effect. It has been observed on IDC that addition of ethanol reduces CO up to 41%, THC emissions decreases by 9% and NOx reduces up to 12%. In WMTC Cycle, the CO reduces up to 32%, THC emission increases by 30%. NOx emissions on WMTC cycle decrease with the use of E10 by 6% while increase with the use of E20 by 7%.
2016-11-08
Technical Paper
2016-32-0087
Satoshi Ichihashi
Motorcycle usage area keeps expanding in the world. Motorcycle filling with various fuels in all countries and regions has to compliance with emissions and fuel consumption regulations as UN-GTR No.2 (WMTC). In general, motorcycle engine has large bore diameter and high compression ratio due to demands of high performance. Poor fuel quality may cause damage to engine mainly by knocking. Knock control systems performing high-frequency vibration detection strategy like knock sensor, which are equipped on several sport-touring motorcycles, can not come to wide use for reasons of complex construct and cost. This research aims to develop a new concept of combustion control for common motorcycle as an instead.
2016-11-08
Technical Paper
2016-32-0083
Michael Zisser, Hans-Juergen Schacht, Reinhard Stelzl, Bernhard Schweighofer, Hannes Wegleiter, Stephan Schmidt, Jakob Trentini, Jan-Philipp Banzhaf, Tim Gegg
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which even the simplest engine setup provides, is some form of the crankshaft speed since it is essentially for the functionality of the engine.
2016-11-08
Technical Paper
2016-32-0092
Tomokazu Kobayashi, Kazuyuki Kosei, Sadaaki Ito, Satoshi Iijima
Due to its body configuration, the engines of scooter type two wheeled vehicle are not directly exposed to the ram air. The cylinder head and the parts in the proximity therefore are cooled by the air blown from the cooling fan directly attached to the crankshaft. That means that the amount of cooling air depending on the engine speed is always supplied to the engine regardless of the engine condition being cold or hot. Also, the cooling capacity is designed so as to prevent any thermal problems even under the highest-temperature conditions. Accordingly, just after cold start or during running under a low load condition, the engine is operated under an over-cooled condition in many cases. When operated under an over-cooled condition, the fuel economy generally becomes poor. Such a phenomenon is attributable to an increase of friction loss from the increase of oil viscosity along with a lowering of oil temperature.
2016-11-08
Journal Article
2016-32-0043
Bernhard J. Graf, Christian Hubmann, Markus Resch, Mehdi Mehrgou
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
2016-11-08
Journal Article
2016-32-0051
Keisuke Terada, Takayuki Sano, Kenichi Watanabe, Takashi Kaieda, Kazuhisa Takano
In recent years three-wheel camber vehicles, with two wheels in the front and a single rear wheel, have been growing in popularity due to their excellent stability and motorcycle-like handling. We call this kind of vehicle a “Leaning Multi Wheel category” vehicle (hereinafter referred to as a “LMW vehicle”) and have been pursuing research and development of these vehicles. A LMW vehicle has various characteristics, but one of them stands out in particular. When a LMW vehicle is cornering, if one of the front wheels passes over a section of road surface with a low friction coefficient, there is very little disturbance to the vehicle’s behavior, it remains stable, and can continue to be driven as normal. However, there has been no investigation into why these vehicles have this particular characteristic and so there is a need to clarify this phenomenon theoretically from the standpoint of understanding these vehicles better.
2016-11-08
Journal Article
2016-32-0052
Michael Schoenherr, Mathieu Grelaud, Ami Hirano
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
2016-11-08
Journal Article
2016-32-0023
Shinji Kasatori, Yuji Marui, Hideto Oyama, Kosuke Ono
One of the effective methods for weight reduction of valve systems in an engine is the application of titanium to the valve material. However, titanium exhaust valves that require high temperature resistance are basically expensive because they contain a lot of rare metals. Therefore, their application to a mass produced product has been very much limited. In this study, it was challenged to develop an alloy that contains only minimum required amount of rare metal elements which has a large impact to the cost, aiming at broadening the application of titanium exhaust valves. Generally speaking, heat-resisting titanium alloy has a high deformation resistance because of its superior strength at high temperature. Accordingly, its formability at high temperature is low and cracks and other defects may easily occur. In addition, when a titanium alloy is exposed with a high temperature atmosphere for a long time, oxidized scales that easily exfoliate are formed on its surface.
2016-11-08
Journal Article
2016-32-0059
Maki Kawakoshi, Takashi Kobayashi, Makoto Hasegawa
In applying ISO 26262 to motorcycles, C class evaluation by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests in terms of safety restrictions (avoid the risk of falling). Moreover, expert riders can ride safely and evaluate the motorcycle performance stably even if the test condition is close to the performance limit of the vehicle. This study aims to construct a motorcycle C class classification method by an expert rider’s subjective evaluation. First, we confirmed the possibility that expert riders can evaluate C class. The riding maneuvers of expert and ordinary riders on the test were compared, assuming normal running. The comparison result demonstrated that expert riders could evaluate C class from an ordinary rider’s perspective. Next, we considered a test procedure that used an evaluation sheet as the C class evaluation technique for an actual hazardous event.
2016-11-08
Journal Article
2016-32-0058
Makoto Hasegawa, Takanobu Kaneko
ISO 26262, a international functional safety standard of electrical and/or electronic systems for motor vehicles, was published in November 2011. And it is expected that motorcycle will be included in its scope at the next revision scheduled in 2018. Prior to its revision, Publicly Available Specification, ISO/PAS 19695 was published in 2015 and this is the adaptation of ISO 26262 for motorcycles. It is foreseen that the essences of this PAS will be the main potion of the revision of ISO 26262 related to motorcycle inclusion. Exposure is one of the factor that determines Motorcycle Safety Integrity Level (MSIL) defined in the PAS. It indicates the probability of the state of an operational situation that can be hazardous with the E/E system malfunction.
2016-11-08
Journal Article
2016-32-0027
Alexander Winkler, Gernot Grabmair
Vehicle dynamics control (VDC) for motorcycles had a fast growth during the last 10 years. The available technologies comprise curve-safe ABS and traction control (TC) systems, anti-wheelie control, right up to comprehensive motorcycle stability systems including even more control functions. VDC systems rely on real-time information about the current motorcycle dynamic state. Thus motorcycles are equipped with additional sensor units, namely MEMS inertial measurement devices, capable of gathering accelerations and angular rates. The application of model-based estimation theory enables the determination of the necessary information about the in-plane and out-of-plane motion, e.g. the motorcycle lean angle. Since VDC systems include safety critical control functions, the validation within simulations including sensor characteristics is mandatory.
Viewing 1 to 30 of 19305