Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 970
2017-04-21
WIP Standard
ARP1971D
This SAE Aerospace Recommended Practice (ARP) covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing/anti-icing fluid spraying system. The unit shall be highly maneuverable for deicing all exterior surfaces of commercial aircraft, of sizes agreed upon between purchaser and manufacturer, in accordance with SAE ARP4737. The vehicle will also be used for aircraft maintenance and inspection. The vehicle shall be suitable for day and night operations.
2017-04-20
WIP Standard
AS9104/1A
These requirements are applicable to IAQG global sectors when utilizing Aerospace Industry Controlled Other Party (ICOP) schemes for the assessment and certidication of supplier quality systems in accordance with the requirements AS/EN/SJAC 9104.
2017-04-13
WIP Standard
AIR5875A
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
CURRENT
2017-04-13
Standard
AIR36105B
The present SAE Aerospace Information Report (AIR) provides a list of the main government regulations, SAE and international standards, and standing industry recommendations applying to air cargo unit load devices (pallets, nets, and containers) to be loaded with either baggage or freight on board civil transport aircraft. It is intended to provide unit load devices designers, purchasers, and operators as well as civil transport aircraft and aircraft cargo systems designers within the industry with a list of the available document references to cover the other aspects that do not all directly pertain to airworthiness and testing, listed in 1.1 of AS36100, – Air Cargo Unit Load Devices - Performance Requirements and Test Parameters [TSO-C90].
2017-04-11
WIP Standard
AIR6920
This AIR is for use by OEM's and Suppliers developing process gate checklists for highly integrated, complex flight control and vehicle management systems to support the life cycle development validation and verification activities prescribed by ARP4754.
2017-04-11
WIP Standard
ARP6539
This SAE Aerospace Recommended Practice (ARP) provides a process for the verification and validation of monitors used in flight control, utility control, and related components and systems. It is intended to serve as a system specific companion document to SAE ARP 4754.
2017-04-05
WIP Standard
ARP6078A
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: - Military aircraft applications - Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) - Inerting of conventional unheated wing tanks or aircraft dry bays - Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
CURRENT
2017-04-05
Standard
ARP6156
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and the chemical attributes associated with the oil formulation. All properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. To assure performance and to provide needed information for engineering design, test methodologies for at least five oil properties or attributes are being addressed: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity. While viscosity versus temperature data are readily available, the above five properties or attributes must be measured under relevant conditions for aero propulsion hardware systems.
CURRENT
2017-04-03
Standard
AIR6127
This SAE Aerospace Information Report (AIR) considers the issue of proper design guidance for high voltage electrical systems used in aerospace applications. This document is focused on electrical discharge mechanisms including partial discharge and does not address personnel safety. Key areas of concern when using high voltage in aerospace applications are power conversion devices, electrical machines, connectors and cabling/wiring. The interaction between components and subsystems will be discussed. The AIR is intended for application to high voltage systems used in aerospace vehicles operating to a maximum altitude of 30000 m (approximately 100000 feet), and maximum operating voltages of below 1500 VRMS (AC)/1500 V peak (DC). These upper voltage limits have been incorporated because this report focuses on extending the operating voltage of non-propulsive electrical systems beyond that of existing aerospace systems.
CURRENT
2017-04-03
Standard
ARP5144A
This SAE Aerospace Recommended Practice (ARP) describes standard methods of heat application to cure thermosetting resins for commercial aircraft composite repairs. The methods described in this document shall only be used when specified in an approved repair document or with the agreement of the Original Equipment Manufacturer (OEM) or regulatory authority..
CURRENT
2017-03-30
Standard
AS47643
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
2017-03-22
WIP Standard
ARP6389
This ARP provides guidelines for improving the Failure Mode and Effect Analysis process, including alternative or additional methods, for flight critical actuation equipment electronics and software.
CURRENT
2017-03-21
Standard
AS5714
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 27, and 29. Compliance with this specification is not considered approval for installation on any aircraft.
2017-03-20
WIP Standard
ARP6912
This Aerospace Recommended Practice (ARP) identifies and defines methods of compliance to power available and inlet distortion requirements for rotorcraft with Inlet Barrier Filter (IBF) installations. The advisory material developed therein may be used as acceptable methods of compliance for determining power assurance, establishing power available, and for substantiating acceptable engine inlet distortion for IBF installations. It is agreed to treat dust, ice, salt water & snow as contaminants to IBF for the purpose of establishing power available and distortion. Flight in known icing will be addressed in ARP6901.
2017-03-17
WIP Standard
AIR6388
The information presented in this AIR is intended to provide information about current remote identification methods and practical considerations for remotely identifying UAS. Depending on rigor and adherence requirements, Aerospace Standard (AS) and Aerospace Recommended Practice (ARP) documents may be developed. For example, ARPs may provide methods to remotely identify UAS using existing hardware technologies typically available to most consumers. ARPs may also specify the information exchange and message format between unmanned aerial systems and remote interrogation instruments. An AS, however, may highlight the wireless frequency band, message type, message encoding bits, and message contents.
CURRENT
2017-03-14
Standard
AS36102B
This SAE Aerospace Standard (AS) specifies the testing methods to be used to substantiate performance of air cargo containers, pallets and nets (Unit Load Devices) for airworthiness approval in accordance with NAS 3610 or AS36100.
CURRENT
2017-03-02
Standard
AS6858
This is a joint SAE/EUROCAE development. This document will be released as both an SAE Aerospace Specification (AS) and a EUROCAE Minimum Aviation System Performance Standard (MASPS). This document defines the technical requirements for the safe integration of gaseous hydrogen fueled Proton Exchange Membrane (PEM) Fuel Cell Systems (FCS) within the aircraft. Most of the technical concepts and approaches covered by this document represent current industry "best practice". Others require specific approval from the procuring activity before use. This requirement for approval is not intended to prohibit their use; but rather to ensure that the prime contractor has fully investigated their capability to perform reliably and to be sufficiently durable under the required conditions and that the prime contractor can present substantiating evidence for approval before the design is committed to.
CURRENT
2017-02-22
Standard
AS5951D
This document defines the requirements for polytetrafluoroethylene (PTFE) lined, para-aramid reinforced, hose assemblies suitable for use in 275 °F (135 °C), 5080 psi (35000 kPa) aircraft hydraulic systems.
CURRENT
2017-02-21
Standard
AS6023
The scope of this document is to: Provide a requirements document for RFID Tag Manufacturers to produce active RFID tags for the Aerospace industry. Identify the minimum performance requirements for active RFID tags to be used on or in close proximity to aircraft. Specify the test requirements specific to active RFID tags for aircraft use, in addition to RTCA DO-160 compliance requirements separately called out in this document. Identify existing standards applicable to active RFID Tag. Provide a certification standard for RFID tags which will use permanently-affixed installation on aircraft and aircraft parts. Battery standards are separately captured and not included in this document.
CURRENT
2017-02-21
Standard
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated. This specification defines the following: General Description (3.1): An overview of the LTPB protocol. Physical Media Interface (3.2): This portion of the standard defines the physical interface to both optical and electrical bus media.
2017-01-27
WIP Standard
ARP5628A
This document recommends criteria and requirements for a Final Approach Spacing System (FASS) for transport aircraft. This is an Aerospace Recommended Practice to support the development of a Final Approach Spacing System (FASS) for Approach Spacing for Instrument Approaches (ASIA) operations.
2017-01-27
WIP Standard
ARP4102/4A
This document recommends design criteria for the Flight Deck Alerting System. The FAS shall enhance safety of flight by providing early crew recognition of aircraft system or component status or malfunction as well as of crew operational error. The FAS, therefore, relates to aircraft configuration and flight phase as well as the aircraft systems. To fulfill this objective, the FAS must attract the attention of the crew, must state with clarity the nature and location of the problem, and must be highly reliable and thoroughly responsive to the operational requirements and environment. Wherever possible, it should provide guidance as to the corrective action.
2017-01-25
WIP Standard
ARP6283/1
Provide user information on best practice methods and processes for the in-service inspection, evaluation and cleaning of expanded beam fiber optic interconnect components, test equipment, and test leads based on the information provided in AIR6031. This document provides the user with a decision making tool to be able to determine if the fiber optic components are acceptable for operation with expanded beam fiber optic termini.
2017-01-19
WIP Standard
ARP6283/2
Provide user information on best practice methods and processes for the in-service inspection, evaluation and cleaning of expanded beam fiber optic interconnect components, test equipment, and test leads based on the information provided in AIR6031. This document provides the user with a decision making tool to be able to determine if the fiber optic components are acceptable for operation with multi-fiber fiber optic termini.
2017-01-17
WIP Standard
AIR6916
Provide guidance for use of the AS 6228 standard in evaluation and selection of powered hand tools. May serve as the outline for an organization's internal operating procedure(s) linking power tool evaluation, procurement and support with quality assurance and safety programs.
CURRENT
2017-01-04
Standard
AIR1839D
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
CURRENT
2017-01-03
Standard
ARP6852B
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses Icing wind tunnel tests Flight tests Computational fluid dynamics and other numerical analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
2016-12-29
WIP Standard
ARP5718B
This document describes: a. the preparatory steps to test experimental Type II, III, and IV fluids according to AMS1428; b. the recommendations for the preparation of samples for endurance time testing according to ARP5485; c. a short description of the recommended field spray test; d. the protocol to generate draft holdover time guidelines from endurance time data obtained from ARP5485; e. the protocol for inclusion of Type II, III, and IV fluids on the FAA and Transport Canada lists of fluids and the protocol for updating the lists of fluids; f. the role of the SAE G-12 Aircraft Deicing Fluids Committee; g. the role of the SAE G-12 Holdover Time Committee; h. the process for the publication of Type II, III, and IV holdover time guidelines. This document does not describe laboratory testing procedures. This document does not include the qualification process for AMS1424 Type I fluids.
2016-12-28
WIP Standard
AS8049D

This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29.

Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data.

While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.

CURRENT
2016-12-20
Standard
AIR6515
This User Guide describes the content of the Enterprise Architect (EA) version of the UCS Architectural Model and how to use this model within the EA modeling tool environment. The purpose of the EA version of the UCS Architectural Interface Control Document (ICD) model is to provide a working model for Enterprise Architect tool users and to serve as the source model for the Rational Software Architect (RSA) and Rhapsody models (AIR6516 and AIR6517). The AIR6515 EA Model has been validated to contain the same content as the AS6518 model for: all UCS ICD interfaces all UCS ICD messages all UCS ICD data directly or indirectly referenced by ICD messages and interfaces the Domain Participant, Information, Service, and Non-Functional Properties Models
Viewing 1 to 30 of 970

Filter

  • Standard
    970