Criteria

Text:
Content:
Display:

Results

Viewing 61 to 90 of 3363
2016-12-08
Standard
J3114_201612
The aim of this Information Report is to provide terms and definitions that are important for the user’s interaction with L2 through L4 driving automation system features per SAE J3016, which provides a basis for this document.
2016-12-07
WIP Standard
J983
This SAE Recommended Practice applies to mobile, construction type, crane and cable excavator hand and foot controls. It should not be construed to limit the use of, or to apply to combination controls, automatic controls, or any other special operating control requirements.
2016-12-06
Standard
J1939/11_201612
This document defines a physical layer having a robust immunity to EMI and physical properties suitable for harsh environments. CAN controllers are available which support the CAN Flexible Data Rate Frame Format. These controllers, when used on SAE J1939-11 networks, must be restricted to use only the Classical Frame Format compliant to ISO 11898-1:2015. These SAE Recommended Practices are intended for light- and heavy-duty vehicles on- or off-road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include but are not limited to: on- and off-highway trucks and their trailers; construction equipment; and agricultural equipment and implements.
2016-12-06
Standard
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
2016-12-01
Standard
ARP1821B
This SAE Aerospace Recommended Practice (ARP) includes recommended ground flotation analysis methods for both paved and unpaved airfields with application to both commercial and military aircraft.
2016-11-30
Standard
USCAR17-5
1.0 SCOPE 1. This document contains procedures for testing performance of SMB-style electrical terminals, connectors and components for coaxial cable connection systems intended for road vehicle applications. These are often called FAKRA II designs. This specification does not apply to the Non RF portion of a Hybrid RF connection system. 2. The intent of this specification is to qualify sealed and unsealed RF connectors that operate at frequencies from DC to 6 GHz. The characteristic impedance of the SMB/FAKRA connection system is 50 ohms however this specification does not exclude the use of these RF connectors on non-50 ohm cables or systems. 3. This specification does not apply to single conductor wire or twisted pair connection systems. 4. This specification (along with SAE/USCAR 18) is designed to provide the mechanical and electrical data required to insure that assemblies from various manufacturers will perform reliably in actual conditions.
2016-11-29
Standard
AS5877B
This SAE Aerospace Standard (AS) prescribes requirements for the various types of nozzles that are used for the refueling and defueling of aircraft fitted with pressure fuel servicing systems. It is to be used as a replacement for MIL-N-5877, MS29520 and for all commercial applications.
2016-11-28
Standard
J2194_201611
Any ROPS meeting the performance requirement of ISO 5700 (Static ROPS Test Standard) or ISO 3463 (Dynamic ROPS Test Standard) meets the performance requirements of this SAE Standard if the ROPS temperature/material and seat belt requirements of this document are also met.
2016-11-23
Standard
J1194_201611
Fulfillment of the intended purpose requires testing as follows:
2016-11-22
WIP Standard
J2271
This SAE Parts Standard provides dimensional and quality assurance requirements for 1/4 through 2 in sizes of studs in the following configurations in standard materials used for ship system applications: a. Continuous thread studs in UNRC and 8UNR series. b. Double end studs (clamping type) where both ends are of the same thread length (UNRC or 8UN). Also called bolt-studs. (These are suitable for mating with nuts or the set end may be installed with anaerobic thread locking compound.) c. Double end studs (interference thread type) with the nut end having UNRC or 8UNR series thread and where the tap end has NC 5 HFS interference fit thread forms. Also called a tap end stud. A complete metric companion to this document is provided in SAE J2271M, therefore no metric equivalents are presented. These studs are primarily or use in ship systems and equipment.
2016-11-18
Standard
AIR6234
This Handbook is intended to provide useful information on the application of AS5716A. It is for use by System Program Offices, aircraft prime contractors, avionics and store system designers, system integrators and equipment manufacturers and users. This Handbook was prepared to provide users of the standard of the rationale and principles considered during the development of the standard. It is anticipated that the handbook will serve to assist developers in introducing new technology to achieve compliance with the standard and the underlying principles of the standard. It is intended that the Handbook be used alongside the standard, as it does not contain significant extracts of the standard.
2016-11-18
Standard
J2828_201611
This SAE Informational report applies to tires used on off-road, rubber-tired work machines as identified in SAE J1116. This SAE document provides general guidelines for proper handling of potential and actual off-road tire fires and possible related explosions.
2016-11-18
Standard
J2258_201611
This SAE Standard defines requirements relating to the elements of design, operation, and maintenance of light utility vehicles. The safety specifications in this document apply to any self-propelled, operator-controlled, off-highway vehicle 1829 mm (72 in) or less in overall width, exclusive of added accessories and attachments, operable on three or more wheels or tracks, primarily intended to transport material loads or people, with a gross vehicle weight of 2500 kg (5500 lb) or less, and a maximum design speed less than or equal to 40.23 km/h (25 mph). This document is not intended to cover Go-Karts (ASTM F2007-07a), Fun-Karts (ASTM F2011-02e1), Dune Buggies, and all terrain vehicles (ATVs) complying with ANSI/SVIA 1.
2016-11-18
Standard
J2358_201611
This SAE Standard defines the safety and performance requirements for Low Speed Vehicles (“LSV”). The safety specifications in this document apply to any powered vehicle with a minimum of 4-wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph),), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
2016-11-15
Standard
J2594_201611
While there are various types of Fuel Cell architectures being developed, the focus of this document is on Proton Exchange Membrane (PEM) fuel cell stacks and ancillary components for automotive propulsion applications. Within the boundaries of this document are the: Fuel Supply and Storage, Fuel Processor, Fuel Cell Stack, and Balance of Plant, as shown in Figure 1.
2016-11-15
Standard
J1294_201611
This SAE Recommended Practice covers distributors used on marine engines. NOTE: This includes devices referred to as high voltage switches used for distributing high voltage to the appropriate spark plugs but does not contain any crank position sensing function.
2016-11-15
Standard
J1281_201611
This SAE Standard establishes the procedure for determining the operator duty cycle sound pressure level Lodc to which operators of powered recreational craft up to 24 m in length are exposed during typical operation as determined by marine engine duty cycle studies. This document describes the instrumentation, the required calibration procedures, the test site, the specifications for “standard craft”, the craft operating conditions, microphone positioning, test procedure, engine speeds for each of the Duty Cycle modes and the formula and table for calculating the Duty Cycle operator ear sound pressure level. This document is subject to change to keep pace with technical advances as well as other international standards and practices. Changes in this Revision: The sound pressure level measurements performed while applying this document are based on the Five-Mode Marine Engine Duty Cycle instead of a single engine speed.
2016-11-15
Standard
J1577_201611
This SAE Recommended Practice provides performance parameters and dimensional specifications for available light sources (replaceable bulbs) which are appropriate for motorcycle headlamps.
2016-11-10
Standard
J2318_201611
This procedure provides test performance requirements for service, spring applied parking, and double diaphragm combination air brake actuators with respect to durability, function, and environmental performance when tested in accordance to SAE J1469.
2016-11-08
Standard
AS9162
This document identifies the basic elements and provides a standard for structuring operator self-verification programs within the aviation, space, and defense industry for producers of commercial and military aircraft and weapons platforms, space vehicles, and all related hardware, software, electronics, engines, and composite components. The requirements specified in this standard are complementary (not alternative) to contractual and applicable statutory and regulatory requirements. Should there be a conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.
2016-11-03
Standard
J2498_201611
This SAE Recommended Practice provides test procedures, requirements, and guidelines for the system of optical warning devices used on emergency vehicles.
2016-11-01
Standard
J3026_201611
This SAE Recommended Practice describes the testing procedures that may be used to evaluate the integrity of ground ambulance-based occupant seating and occupant restraint systems for workers and civilians transported in the patient compartment of an ambulance when exposed to a frontal or side impact. This Recommended Practice was based on ambulance patient compartment dynamics and is not applicable to other vehicle applications or seating positions. This Recommended Practice is structured to accommodate seating systems installed in multiple attitudes including but not limited to side-facing, rear-facing, and forward-facing.
2016-11-01
Standard
J3058_201611
This SAE Recommended Practice describes the dynamic testing procedures required to evaluate the integrity of patient compartment interior Storage Compartments such as cabinets, drawers, or refillable supply pouch systems when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide component manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure interior Storage Compartments or systems meet the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
2016-11-01
Standard
J3027_201611
This SAE Recommended Practice describes the testing procedures required to evaluate the integrity of a ground ambulance-based patient litter, litter retention system, and patient restraint when exposed to a frontal, side or rear impact. Its purpose is to provide litter manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent ensures the patient litter, litter retention system, and patient restraint utilizes a similar dynamic performance test methodology to that which is applied to other vehicle seating and occupant restraint systems. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
2016-10-26
WIP Standard
J3133
The motorcycle terminology presented herein addresses two-wheel single track vehicles, as well as three wheel variants. . Although two-wheeled, single track scooters and mopeds are similar to traditional motorcycles, they have many characteristics which differentiate them from motorcycles, and while some terms will apply, this Terminology addresses motorcycles specifically, unless otherwise noted.
2016-10-25
Standard
AS5900C
This SAE Aerospace Standard (AS) establishes the aerodynamic flow-off requirements and test procedures for AMS1424 Type I and AMS1428 Type II, III and IV fluids used to deice and/or anti-ice aircraft. The objective of this standard is to ensure acceptable aerodynamic characteristics of the deicing/anti-icing fluids as they flow off of aircraft lifting and control surfaces during the takeoff ground acceleration and climb. Aerodynamic acceptance of an aircraft ground deicing/anti-icing fluid is based upon the fluid’s boundary layer displacement thickness (BLDT) on a flat plate, measured after experiencing the free stream velocity time history of a representative aircraft takeoff. Acceptability of the fluid is determined by comparing BLDT measurements of the candidate fluid with a datum established from the values of a reference fluid BLDT and the BLDT over the dry (clean) test plate.
2016-10-25
Standard
J1067_201610
This SAE standard establishes the minimum construction and performance requirements for seven conductor 1/8-1/10-5/12 cable for use on trucks, trailers and converter dollies. Where appropriate, the standard refers to two types of cables, (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications.
2016-10-25
Standard
J1939/71_201610
The SAE J1939 communications network is developed for use in heavy-duty environments and suitable for horizontally integrated vehicle industries. The SAE J1939 communications network is applicable for light-duty, medium-duty, and heavy- duty vehicles used on-road or off-road, and for appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on-highway and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. SAE J1939-71 Vehicle Application Layer is the SAE J1939 reference document for the conventions and notations that specify parameter placement in PGN data fields, the conventions for ASCII parameters, and conventions for PGN transmission rates. This document previously contained the majority of the SAE J1939 data parameters and messages for information exchange between the ECU applications connected to the SAE J1939 communications network.
2016-10-21
Standard
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
2016-10-21
Standard
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
Viewing 61 to 90 of 3363

Filter