Display:

Results

Viewing 1 to 30 of 27468
2017-10-08
Technical Paper
2017-01-2268
Zhanming Chen, Long Wang, Tiancong Zhang, Qimeng Duan, Bo Yang
Liquefied natural gas (LNG) fuelled engines have been widely equipped on heavy duty vehicles both for fuel-economic and environmental protection concerns, however, they always suffer from deteriorated combustion performance and flame stability due to relatively low burning velocity of methane for lean mixture. In this paper, experimental study was conducted on a turbo-charged, spark-ignition, lean-burn LNG engine with methanol port injection. The combustion characteristics such as cylinder pressure traces, heat release rate (HRR), mass fraction burned (MFB), ignition delay, centroid of heat release, position of CA50 and CA90, as well as cyclic variation of peak pressure were analysed under light load (BMEP=0.3876MPa) with different methanol substitution rates (MSR=0%, 5.2%, 10.2%, 17.2%). The experimental results show that combustion phase advanced with increment of MSR due to faster burning velocity of methanol.
2017-10-08
Technical Paper
2017-01-2358
Michael P Gahagan
The automotive transmission market has seen an increase in the number of hybrid electric vehicles (HEV), and forecasts predict additional growth. In HEVs, the hybrid drivetrain hardware can combine electric motor, clutches, gearbox, electro-hydraulics and the control unit. In HEV hardware the transmission fluid can be designed to be in contact with an integrated electric motor. One transmission type well-suited to such hybridization is the increasingly utilized dual clutch transmission (DCT), where a lubricating fluid is in contact with the complete motor assembly as well as the DCT driveline architecture. This includes its electrics, and therefore raises questions around the suitability of standard transmission fluids in such an application. This therefore drives the need for further understanding of fluid electrical properties in addition to the more usually studied engineering hardware electrical properties.
2017-10-08
Technical Paper
2017-01-2462
Ruipeng Zhang, Kaichuang Meng
The powertrain of the separated axle hybrid electric dump truck was analyzed, and the vehicle dynamics model was established. Considering the switch among different drive modes during the process of driving, a driving force coordinated allocation control strategy was applied. The control strategy adopts hierarchical structure, the upper layer determines power take-off mode of the vehicle, the middle layer calculates the drive torque of each axle according to its axle load, the lower layer uses PID algorithm to avoid the slip of the drive axle. Control model is established according to the control strategy, combined with the established vehicle dynamic model, co-simulation was conducted. The simulation results show that the driving force coordinated control strategy can adapt to the full load climbing condition and low adhesion road condition, realize the reasonable distribution of driving force and make full use of the ground adhesion.
2017-10-08
Technical Paper
2017-01-2350
Chalermwut Wongtaewan, Umaporn Wongjareonpanit, Komkrit Sivara, Ken Hashimoto, Yoichiro Nakamura
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil has developed by PTT to meet both JASO DH-2 performance for heavy-duty diesel engine oils and OEM requirements for CNG engine oils.
2017-10-08
Technical Paper
2017-01-2460
Wenbin Liu, Qiang Song, Yiting Li, Wanbang Zhao
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
2017-10-08
Technical Paper
2017-01-2455
Vikram Chopra
This paper reports on the design of a synchronizer brake based on permanent magnets, capable of braking with an active zero-slip load. Eddy-current brakes are widely used in automation and transportation applications; however, their use is limited by the rotor speed. For low-speed and high-torque applications, designs based on permanent magnets are better suited. Zero-slip braking torque is increased by the use of permanent magnets but, consequently, so is the cogging torque. At first, the synchronizer brake was designed with 16 surface magnets on the rotor. However, in order to reduce the permanent magnet mass, the rotor was re-designed with half the number of surface magnets. This novel design helped lower cogging torque and fabrication costs. Simulation of the design, using the 3D transient with motion solver in commercial finite element software, showed promising results.
2017-10-08
Technical Paper
2017-01-2364
Jiaqiang Li, Yunshan Ge, Chao He, Jianwei Tan, Zihang Peng, Zidi Li, Wei Chen, Shijie Wang
Urea selective catalytic reduction is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea selective catalytic reduction process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and provides to catalysts to reduce NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12℃. For preventing deposits formation, the aqueous urea solution is difficult to be injected into the exhaust gas stream at temperature below 200℃. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions.
2017-10-08
Technical Paper
2017-01-2394
Ning Xu, Di-ming Lou, Ji-yao Liu, Piqiang Tan, Zhiyuan Hu
The Extended-range electric transit bus (EREbus) equipped with the auxiliary power unit (APU) using high efficient diesel engine as power source can reduce the cost of power battery and is an ideal transitional powertrain architecture to the pure electric drive. Based on chassis tests of a 12m long EREBus, fuel consumption and emission characteristics during charge sustain stage effected by temperature of the EREBus are researched. The APU of EREBus starts to work around just one point with best efficiency and lower emission when the state of charge (SOC) is too low and stop when the SOC is high, which aims to lower fuel consumption, and as a result, even during charge sustain stage, the fuel consumption per hundred kilometers of Rebus is only 22.84 L and emissions also decrease dramatically except for the ultrafine-particle number emission on account of better combustion.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Power-split is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed. Meanwhile, two different methods to search the engine operation point has been proposed. And the simulation shows both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, in the C-WTVC (Chinese-World Transient Vehicle Cycle). Based on ECMS a design for generator motor and traction motor in power-split heavy duty truck has been processed. The fuel consumption has been indicted to decrease, with the motor power increasing.
2017-10-08
Technical Paper
2017-01-2458
Mohamed Awadallah, Peter Tawadros, Paul Walker, Nong Zhang
Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next 10 years, among which mild hybrid will become a leading sector in growth. Researchers forecast the sales of mild hybrid vehicles will reach 1.4 million units per year by 2020, and 7 million units by 2024. The high cost of HEVs has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, a plug‐in hybrid or an electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for these markets to improve the drive performance and efficiency. High power density ultra-capacitors are incorporated for fast charging and discharging during the acceleration and other operations.
2017-10-08
Technical Paper
2017-01-2208
Tao Liu, Ziwang Lu, Guangyu Tian
To further explore the potential of fuel economy for hybrid electric vehicle (HEV) , an adaptive energy management strategy (EMS) considering driver’s power demand reasonability is proposed, which is necessary to reduce fuel consumption, emission and traffic congestion. To get accurate and reliable control strategy two aspects are the most important: 1) a rigorous and organized modeling approach to describe complicated powertrain system of HEV, 2) a trade off between optimization and real time. The Energetic Macroscopic Representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. Based on Energetic Macroscopic Representation (EMR) a powertrain architecture of HEV is constructed. Generally EMS includes rule based that can be used online with suboptimal solution and optimization based that ensures the minimum fuel consumption with heavy computation duty and requirement of prior knowledge.
2017-10-08
Technical Paper
2017-01-2452
Kingsley Joel Berry, Abdrahamane Traore, Aravind Krishna, Pavankumar Gangadhar, Allan Taylor
This paper documents the electrical infrastructure design of a Hybrid Go Kart competition vehicle which includes a dual Fuel Cell power system, Ultra Capacitors for energy storage, and a dual AC induction motor capable of independent drive. The Kart was built primarily to compete in the 2009 Formula Zero international event. The vehicle model was developed in Simulink to determine whether the fuel cell and ultra-capacitor combination will be sufficient for peak transient power requirement of 36 kW. The vehicle’s functional description and performance specifications are documented including the integration of the fuel cell power modules, energy storage system, power converters, and AC motor and motor controllers.
2017-10-08
Technical Paper
2017-01-2221
Peixuan Zeng, Penghao Zhang, Binyu Mei, Shiping Huang, Gangfeng Tan
Abstract:In low temperature condition, the increase of fuel viscosity, the decrease of flow-ability of lubricating oil and the decrease of storage battery performance cause the engine starting difficult. The current electrical heating method can improve the engine starting performance in low temperature condition, but it causes a negative influence on storage battery performance and exhaust emission. In this paper, a warming device uses solar energy to directly warm up the engine. The device transfers solar power into thermal energy and store it into heat reservoir and uses heat conductor to warm up the engine. By using solar power to save power, the lifespan of the engine is extended and exhaust emission is decreased. This paper find out the heat amount necessary for diesel engine through resource gathering and calculation, choose an appropriate device and design a corresponding solar warming system. Keywords: warming system, solar power, diesel engine
2017-10-08
Technical Paper
2017-01-2222
ZhenYang Liu, Xihui Wang
The ever increasing popularity of electric vehicles and demand in passengers comfort and safe requirements of vehicle have led more efficient heat pump air conditioning system to an indispensable device in electric vehicle. Many studies have shown that the addition of nano particles contributes to improving the thermal conductivity of nano fluids more than that of conventional refrigerants. Therefore, the appliance of the magnetic nano-refrigerant in heat pump air conditioning system has great potential to improve the heat transfer efficiency. This paper aims at studying the magnetic nano-refrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a.According to the relevant theoretical analysis and different empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately.
2017-10-08
Technical Paper
2017-01-2353
Bernardo Tormos, Leonardo Ramirez, Guillermo Miró, Tomás Pérez
Attending the oncoming licensing of API F4K oil category for Heavy duty Vehicles, which main objective is to embrace the opportunity to reduce fuel consumption and CO2 emissions lowering the High Temperature High Shear (HTHS) oil viscosity a fleet test was performed during 2016 in a fleet of urban buses in the city of Valencia. This paper describes the results of a comparison test where the effect of the use of API FA4 like engine oils are used to measure their fuel consumption benefits over the fleet. The aim was to verify and quantify the theoretical benefits in terms of fuel consumption in Heavy Duty applications. The study was performed using 48 urban buses which include diesel and CNG models of the city of Valencia. These buses were divided in two groups; a control and a test group, using regular oils and API FA4. The fuel consumption of buses was calculated with distance and refueling.
2017-10-08
Technical Paper
2017-01-2368
Wenji Song, Weiyong Tang, Bob Chen
The 4JB1 diesel engine originated from Isuzu has large share in the China light duty truck market. However, the tightened NOx emission target enforced by NS-V legislation compared with NS-IV regulatory standard is very challenging for this engine platform which originally adopted the DOC+POC catalyst layout. Furthermore, combustion characterization of this type engine leads to high soluble organic fration (SOF) content in engine out particulates, which requires the catalysts in the exhaust after-treatment system (ATS) to deliver high SOF conversion efficiency in order to meet the regulation limit for particulate matters (PM). In this paper, an innovative DOC+V-SCR exhaust catalyst layout with DOC+V-SCR is introduced. The front DOC is specially formulated with optimized PGM (Platinum Group Metal) loading which ensures effective SOF oxidation while keeping sulfuric acid and sulfate generation minimal.
2017-10-08
Technical Paper
2017-01-2351
Bernardo Tormos, Guillermo Miró, Leonardo Ramirez, Tomás Pérez
Low viscosity engine lubricants (LVO) are considered a possible solution for improving fuel economy in ICE. So, the aim of this study was to verify experimentally the performance of low viscosity lubricants regarding engine wear, since the use of LVO could imply unwanted wear performance. Potential higher wear could result in a reduction in life cycle for the ICE, a non-desired effect. In addition, currently limited data are available regarding “real-world” performance of LVO in a real service fleet. In this particular case, there were included out-of-specifications oils in terms of HTHS dynamic viscosity, where low viscosity was considered (3.0 cP), making this test highly interesting for industry.
2017-10-08
Technical Paper
2017-01-2391
Daisy Thomas, Hu Li, Xin Wang, Bin Song, Yunshan Ge, Wenlin Yu, Karl Ropkins
Real world driving emissions have become an ever increasing problem in urban areas, particularly in some mega cities. In this paper, eight in-use spark ignition gasoline-fueled and hybrid passenger cars were tested for real driving emissions (RDE). The vehicles tested include both European and Japanese makes, spanning from EURO 5 to EURO 6 emission compliance. During the RDE testing, the vehicles’ emissions were logged alongside their driving and operational parameters, such as exhaust flow rate and temperature, using the vehicles’ OBD systems. The RDE cycles are comprised of 33% urban, 33% rural and 34% motorway driving, of total duration approximately 1.5 hours. The RDE testing was performed in Beijing, China, using the Horiba OBS-ONE Gas and Horiba OBS-ONE PN equipment for six of the RDE tests, and the AVL M.O.V.E equipment for two of the RDE tests.
2017-10-08
Technical Paper
2017-01-2466
Graham Arnold
This paper intends to explore improved vehicle efficiency through a control system optimizes the use of regenerative braking in a plug-in, series, hybrid electric vehicle. Currently, vehicles are equipped with a plethora of sensing technology to supply information to the vehicle’s advanced driver assistance system (ADAS). These systems can be leveraged to also help improve vehicle efficiency by providing real time information that can help improve control strategies to maximize the usage of regenerative braking to reduce wasted energy in conventional friction braking. Advanced sensing can allow the vehicle to react before the human driver responds, allowing for the vehicle to begin deceleration through regenerative braking preemptively. This papers aims to simulate the basic functionality of such a control system to explore the potential efficiency gains available. The proposed system is simulated using a longitudinal full-vehicle model developed in MATLAB and Simulink.
2017-10-08
Technical Paper
2017-01-2464
Xinyou Lin, Chaoyu Wu, Qingxiang Zheng, Liping Mo, Hailin Li
The Range-extended electric vehicle (RE-EV) is a complex nonlinear system. The control strategy of REEV can be affected by numerous parameters. Firstly, the Multiple Operation Points (MOP) control strategy is proposed based on operation features of the RE-EV and combining with the optimal efficiency region of the engine. The switching logic rules of MOP strategy are designed for the desired operation mode transition, which makes the engine running at high efficiency region. Then,GA(Genetic algorithm) is implemented to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The SOC (State of Charge) and speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters combination is obtained based on this control strategy.
2017-10-08
Technical Paper
2017-01-2205
Velmurugan M A, MahendraMohan Rajagopal
Agricultural tractors are often subjected to various applications like front end loading work, cultivation work, where frequent forward and reverse gears are needed. Most of Indian agricultural tractors are equipped with mechanical transmission system which demands repeated clutching and de-clutching operation for such applications resulting in increased operator fatigue and lesser productivity. Also need of electronics in Indian agricultural industry for better farm mechanization is growing high. This research work depicts development of electronic bi-directional shifting (power shuttle) control design and calibration for farm vehicle fitted with wet clutch transmission.This research also reduces operator fatigue via frequent directional shift through electronic transmission. The control system is designed without any electronic interfacing with engine and also provides clutch-less gear shifting and auto-launch which offers ease to drive even for novice driver.
2017-10-08
Technical Paper
2017-01-2408
Lei Zhou, Hongxing Zhang, Zhenfeng Zhao, Fujun Zhang
The Opposed Piston Two-Stroke (OPTS) engine has several advantages for power density, fuel tolerance, fuel efficiency and package space. A new type of balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. The effects of high altitude environment on engine performance and emissions are investigated by thermodynamic simulation. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicate that a suitable turbocharger for OPTS engine can achieve the purpose of improving the quality of scavenging, lowering the fuel consumption and recovering power at high altitude environment. Finally, an optimized OPTS engine model especially for UAV is proposed in this research.
2017-10-08
Technical Paper
2017-01-2359
Yaodong Hu, Fuyuan Yang, Minggao Ouyang
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with P2 configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption test methods and its limits of the third stage will be introduced and explained in detail. Then, the quasi static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC cycle are built.
2017-10-08
Technical Paper
2017-01-2459
Liu Xiaojun, Yu Jinpeng, Yang Xia, Wu Daoming, Jie Zhu
In the case of electric vehicles, due to the charging current limitation of lithium battery at low temperatures (below -20℃), it has been proposed to heat the battery pack up to a suitable temperature range before charging through a liquid-heating plate with PTC. However, in the low state of charge (SOC), there is a question which one could take the place of battery pack to supply power for PTC when heating. So that off-board charger has been considered to supply power for PTC detailed in this paper. In order to control the current charging to the battery pack as less as possible at low temperatures, three control strategy models are established and compared: First, BMS controls the charging request current value which is send to off-board charger as a signal, and equals to the working current of PTC. Second, BMS controls the charging request voltage value which is slightly lower than the battery pack voltage.
2017-10-08
Journal Article
2017-01-2298
Charles S. Shanahan, S. Scott Smith, Brian D. Sears
Abstract The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
2017-09-23
Technical Paper
2017-01-1954
Peng Hang, Xinbo Chen, Fengmei Luo
Abstract Path tracking is the rudimentary capability and primary task for autonomous ground vehicles (AGVs). In this paper, a novel four-wheel-independent-steering (4WIS) and four-wheel-independent-drive (4WID) electric vehicle (EV) is proposed which is equipped with steer-by-wire (SBW) system. For path-tracking controller design, the nonlinear vehicle model with 2 degrees of freedom (DOF) is built utilizing the nonlinear Dugoff tire model. The nonlinear dynamic model of SBW system is conducted as well considering the external disturbances. As to the path-tracking controller design, an integrated four-wheel steering (4WS) and direct yaw-moment control (DYC) system is designed based on the model predictive control (MPC) algorithm to track the target path described by desired yaw angle and lateral displacement. Then, the fast terminal sliding mode controller (FTSMC) is proposed for the SBW system to suppress disturbances.
Viewing 1 to 30 of 27468

Filter