Display:

Results

Viewing 1 to 30 of 27134
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-04-11
Journal Article
2017-01-9450
Ali Reza Taherkhani, Carl Gilkeson PhD, Philip Gaskell PhD, Rob Hewson PhD, Vassili Toropov PhD, Amin Rezaienia PhD, Harvey Thompson
Abstract This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
2017-03-28
Technical Paper
2017-01-0215
Mohammad Nahid, Amin Sharfuzzaman, Joydip Saha, Harry Chen, Sadek S. Rahman
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more sophisticated vehicle thermal management systems to best utilize the waste heat and improve driveline efficiency. The final drive unit in light and heavy duty trucks usually consists of geared transmission and differential housed in a lubricated axle. The automotive rear axles is one of the major sources of power loss in the driveline due to gear friction, churning and bearing loss and have a significant effect on overall vehicle fuel economy. These losses vary significantly with the viscosity of the lubricant. Also the temperatures of the lubricant are critical to the overall axle performance in terms of power losses, fatigue life and wear.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Improving fuel economy has been a key focus across automotive and truck industry for several years if not decades. In heavy duty commercial vehicles, the benefits from small gains in fuel economy lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG levels which closely translate to vehicle fuel economy. For current state of the art FE technologies, incremental gains are so small that they are hard to measure on an actual vehicle. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynos are used, however, there is an associated variability even with these tests due factors such as part to part differences, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus operated under steady and transient conditions respectively on real road equipped with and without CCRT (the same bus) fuelled with biodiesel blends BD10 (90% pure diesel and 10% biodiesel by volume) and BD0 (100% pure diesel) was tested and analyzed using electrical low pressure impactor (ELPI). Results showed that the particulate number-size distribution of BD10 had two peaks in nuclei mode and accumulation mode respectively except the condition of high speed, which was similar to BD0.
2017-03-28
Technical Paper
2017-01-0216
Joydip Saha, Harshit Coutinho, Sadek S. Rahman
Current and future automotive systems are becoming more complex than ever. They consist of different subsystems such as the engine, transmission, cooling system, driveline, controls systems, HVAC and active/passive safety systems. Hardware and software development for each of these subsystems have different timeline’s. The subsystems are usually developed by different teams within an organization and in some cases are also developed by suppliers. These are some of the main hurdles for carrying out a system level analysis of the vehicle earlier in the development process. Model.CONNECT was used to overcome the above mentioned hurdles by connecting a driveline model, a cooling system model, thermal controller and two-phase flow models with minimal effort.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of inputs. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine model are developed. The models have been correlated heuristically using Simulink and Flowmaster, respectively. In order to extend the lumped mass engine model it also has been extended to Simulink model. In contrast to the complexity of the models the “Heuristic search” of input parameters has been found to be challenging and time consuming.
2017-03-28
Technical Paper
2017-01-0903
Sarp Mamikoglu, Jelena Andric, Petter Dahlander
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
2017-03-28
Technical Paper
2017-01-0396
Guobiao Yang, Changqing Du, Dajun Zhou, Hao Wang, Elizabeth Lekarczyk, Lianxiang Yang
Abstract Vehicle weight reduction is a significant challenge for the modern automotive industry. In recent years, the amount of vehicular components constructed from aluminum alloy has increased due to its light weighting capabilities. Automotive manufacturing processes, predominantly those utilizing various stamping applications, require a thorough understanding of aluminum fracture predictions methods, in order to accurately simulate the process using Finite Element Method (FEM) software or use it in automotive engineering manufacture. This paper presents the strain distribution of A5182 aluminum samples after punch impact under various conditions by Digital Image Correlation (DIC) system, its software also measured the complete strain history, in addition to sample curvature after it was impacted; therefore obtaining the data required to determine the amount of side-wall-curl (Aluminum sheet springback) present after formation.
2017-03-28
Technical Paper
2017-01-0401
Ye Yuan, Junzhi Zhang, Yutong Li, Chen Lv
Abstract As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
2017-03-28
Technical Paper
2017-01-0409
Divyanshu Joshi, Anindya Deb, Clifford Chou
Abstract It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
2017-03-28
Technical Paper
2017-01-0415
Xingxing Feng, Peijun Xu, Penglei Fu, Yunqing Zhang
Abstract This work is motivated by the fact that the surface of a terrain may vary with local pavement properties and number of passes of the vehicle, which means the roughness coefficient and waviness of the terrain may vary in specific intervals. However, in traditional random terrain models, the roughness coefficient and waviness of the terrain are assumed as constants. Therefore, this assumption may be not very reasonable. A novel random terrain model is presented where the roughness coefficient and waviness of the terrain are expressed by interval numbers instead of constants. A 5-degree-of-freedom ride dynamic model of the vehicle with uncertain parameters is derived. The power spectral density (PSD) and root mean square value (RMS) of the vehicle ride responses are shown and analyzed. Analysis results indicate that the vehicle responses vary in specific intervals under the random terrain excitation with interval parameters.
2017-03-28
Technical Paper
2017-01-0422
Guohong Zhang, Qianqian Xie, Shuwei Zhu, Yunqing Zhang
Abstract The sewing machine has been widely used in various aspects of life and it is essential to study its kinematic and dynamic characteristics. A dynamic model of flexible multi-link mechanism for sewing machine including joints with clearance is established to analysis its dynamic response in the present work. The configuration of the sewing machine mainly included five subsystems, feeding mechanism, needle bar mechanism, looper mechanism, shearing mechanism and adjusting mechanism. Since the sewing machine mainly consist of linkage mechanisms that are connected by revolute joints and translational joints, the existence of clearances in the joints and the flexibility of crankshafts and linkage are important factors that affect the dynamic performance. Even little clearance can lead to vibration and fatigue phenomena, lack of precision or even make overall behavior as random.
2017-03-28
Technical Paper
2017-01-0423
Lei Yang, Qiang Li, Chuxuan Wang, Yunqing Zhang
Abstract This paper focuses on dynamic analysis and frame optimization of a FSAE racing car frame. Firstly, a Multi-Body Dynamic (MBD) model of the racing car is established using ADAMS/Car. The forces and torques of the mechanical joints between the frame and suspensions are calculated in various extreme working conditions. Secondly, the strength, stiffness and free vibration modes of the frame are analyzed using Finite Element Analysis (FEA). The extracted forces and torques in the first step are used as boundary conditions in FEA. The FEA results suggest that the size of the frame may be not reasonable. Thirdly, the size of the frame is optimized to achieve minimized weight. Meanwhile the strength and stiffness of the frame are constrained. The optimization results reveal that the optimization methodology is powerful in lightweight design of the frame.
2017-03-28
Technical Paper
2017-01-0428
Tianqi Lv, Yan Wang, Xingxing Feng, Yunqing Zhang
Abstract Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
2017-03-28
Technical Paper
2017-01-0430
Bangji Zhang, Kaidong Tian, Wen Hu, Jie Zhang, Nong Zhang
Abstract This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
2017-03-28
Technical Paper
2017-01-0438
Zhenhai Gao, Tianjun Sun, Lei He
Abstract A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-1353
Michael G. Leffert
Abstract This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
2017-03-28
Technical Paper
2017-01-1371
Hao Pan, Xuexun Guo, Xiaofei Pei, Xingzhi Dong
Abstract Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
2017-03-28
Technical Paper
2017-01-1400
Keyu Qian, Gangfeng Tan, Renjie Zhou, Binyu Mei, Wanyang XIA
Abstract Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
2017-03-28
Technical Paper
2017-01-0212
Mohammad Nahid, Rezwanur Rahman, Tabassum Hossainy, Shreyas Kapatral, Prashant Modi, Joydip Saha, Sadek S. Rahman
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1-D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor as well as transmission lubricant temperature during both steady-state and transient driving cycles.
2017-03-28
Technical Paper
2017-01-1185
Patrick Salman, Eva Wallnöfer-Ogris, Markus Sartory, Alexander Trattner, Manfred Klell, Helfried Müller, Axel-Oscar Bernt, Michael Martin, Knut Schiefer, Manfred Limbrunner, Johannes Höflinger, Peter Hofmann
Abstract The continuous increasingly stringent regulations for CO2 fleet targets request the introduction of zero-emission solutions in the near future. Moreover, additional customer benefits have to be generated in order to increase customer acceptance of zero-emission technologies. Actually high costs, reduced driving ranges and lack of infrastructures are some aggregative facts for end-customer acceptance thus also for a broad market launch. Plug-in hybrids as intermediate step towards zero-emission vehicles are meanwhile in series production with partly “zero-emission” operation mode and are well accepted by customers. The project partners HyCentA Research GmbH, Magna Steyr Engineering AG & Co KG, Proton Motor Fuel Cell GmbH and the Vienna University of Technology, Institute for Powertrains and Automotive Technology, have developed a hydrogen-powered zero-emission vehicle within a national funded research project.
2017-03-28
Technical Paper
2017-01-1180
Stefan Brandstätter, Michael Striednig, David Aldrian, Alexander Trattner, Manfred Klell, Tomas Dehne, Christoph Kügele, Michael Paulweber
Abstract The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
2017-03-28
Technical Paper
2017-01-0479
Soichi Hareyama, Ken-ichi Manabe, Makoto Nakashima, Takayuki Shimodaira, Akio Hoshi
Abstract This investigation describes a method for estimating the absolute lock effect in bolted joint. Observation results of loosening phenomenon in industrial vehicle are analyzed for the linear relation by the proposed regression formula. Based on the relation, in early stages of the development test, the rate of clamping force decrease can be estimated accurately after prolonged operation by measuring the clamping force behavior. The tendency to decrease is observed about the depression type and working load type loosening. For evaluation design bases, the residual clamping force estimation chart is established. The L-N (Loosening Lifetime - Number of Cycles to Loosening N) diagram is proposed for the loosening lifetime prediction for working load type loosening also. Using the loosening damage (cumulative decrease of clamping force) and L-N diagram, the lifetime to loosening failure can be predicted accurately for the locking device and method as an absolute evaluation.
2017-03-28
Technical Paper
2017-01-0410
Aref M. A. Soliman
Abstract Although active suspension improved vehicle ride comfort, their two main drawbacks are the required high component costs and energy input levels for active suspension. The semi-active and twin accumulator suspensions are proposed which addresses these two drawbacks. Ride performances for passive, twin accumulator and semi-active are examined theoretically using half vehicle model. The power consumed in rolling resistance and power dissipation in suspension for passive, twin accumulator and semi-active suspension systems are evaluated. The effect of road disturbance on the vehicle ride performance for twin accumulator and semi-active suspension systems is studied. The rolling resistance power losses are also investigated. The results showed that the optimum twin accumulator suspension system over all road roughness/speed conditions would have adaptable spring stiffness and damping coefficients which could be changed depending on the road conditions.
2017-03-28
Technical Paper
2017-01-1187
Tatsuya Sugawara, Takuma Kanazawa, Naoki Imai, Yu Tachibana
Abstract This paper describes the motorized turbo compressor, which is a key technology for reducing the size of the fuel cell system for the Clarity Fuel Cell. The oxygen needed for fuel cell power generation is sent into the fuel cell by compressing the air from the atmosphere by a compressor. The conventionally used Lysholm compressor needed numerous sound absorbers, such as silencers and covers, to help achieve quietness when driving. Therefore, changing to a turbo compressor enhanced quietness and helped to eliminate or reduce the size of these auxiliary sound absorbers. Furthermore, a two-stage supercharging structure was used and the air pressure supplied to the fuel cell was increased to 1.7 times the previous air pressure. This increased the fuel cell power, which enabled to reduce the number of cells needed, and reduced the needed humidification amount which enabled to reduce the size of the humidifier. These enhancements helped to reduce the system size.
Viewing 1 to 30 of 27134

Filter