Criteria

Display:

Results

Viewing 1 to 30 of 5236
2017-10-31
White Paper
WP-0002
The environmental impact of hydrocarbon-burning aircraft, both from the perspective of gas emissions and that of noise, is one of the main motivations for the move to electric propulsion. The added benefit from this shift to electric propulsion is that it has resulted in lowering the costs of electrical components such as motors, power electronic (PE) circuits, and batteries that are essential to this technology. This white paper seeks to explore the history, architecture, electrical components, and future trends of electric flight technology.
2017-10-08
Technical Paper
2017-01-2408
Lei Zhou, Hongxing Zhang, Zhenfeng Zhao, Fujun Zhang
Abstract The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
2017-09-19
Technical Paper
2017-01-2135
Alex Thirkell, Rui Chen, Ian Harrington
Abstract Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
2017-09-19
Technical Paper
2017-01-2139
Guy Fortin
Abstract This paper reviews the current knowledge on super-hydrophobic coatings (SHC). Using an ideal super-hydrophobic surface patterned with identical cylindrical flathead posts forming a square network with constant periodicity, models are proposed to explain SHC, wear and ice adherence on SHC. The models demonstrate that SHC based on Cassie-Baxter state improve the bead mobility compared to SHC based on Wenzel state and more suitable for aircraft application. Their erosion resistance can be improved by increasing the post height and the hydrophobic material thickness. Their ice adhesion reduction factor (IARF) is better but SHC based on Cassie-Baxter state have a limitation to reduce ice adherence dependence on the surface pattern and IARF of the hydrophobic material. The bead mobility is calculated from advancing and receding water contact angles (WCA).
2017-09-19
Technical Paper
2017-01-2126
Ashutosh Kumar Jha, Gaurav Sahay, Adishesha Sivaramasastry
Abstract In aerospace industry, the concept of Integrated Vehicle Health Management (IVHM) has gained momentum and is becoming need of the hour for entire value chain in the industry. The expected benefits of lesser time for maintenance reduced operating cost and ever busy airports are motivating aircraft manufacturers to come up with tools, techniques and technologies to enable advanced diagnostic and prognostic systems in aircrafts. At present, various groups are working on different systems and platforms for health monitoring of an aircraft e.g. SHM (Structural Health Monitoring), PHM (Prognostics Health Monitoring), AHM (Aircraft Health Monitoring), and EHM (Engine Health Monitoring) and so on.
2017-09-19
Technical Paper
2017-01-2155
Michal Salacinski, Piotr Broda, Piotr Samoraj
Abstract Polish Armed Forces are currently operating hundred helicopters belonging to Mi family. Metal fuselage is usually resistant to the battle and the human factor. Unfortunately, metal rotor blades of Mi helicopters are sensitive to operating conditions. Single blade is made from monolithic aluminum spar and mutually separated trailing sections, which are bonded to the spar. The sections are constructed of metal sandwich panels. During aggressive military operating conditions blades sections are often damaged by debonding from the spar, fatigue cracks of section skin, dents and perforations as well as erosion. The manufacturer assumed that structurally damaged sections should be exchanged. Provided repair technologies are applied only to cosmetic damages. Unfortunately, there is a limit to number repairs which prevents replacement of two neighboring sections due to the high temperature of curing cycle during the section replacement.
2017-09-19
Technical Paper
2017-01-2158
Fernando Stancato, Luis Carlos dos Santos, Marcelo Pustelnik
Abstract A problem of interest of the aeronautical industry is the positioning of electronic equipment in racks and the associated ventilation system project to guarantee the equipment operational conditions. The relevance of the proper operation of electronic equipment increases considerably when high economical costs, performance reduction and safety are involved. The appropriate operational conditions of the electronic components happen when the working temperature of the equipment installed in the rack is inside a safety project temperature margin. Therefore, the analysis and modelling of heat transfer processes for aircraft rack design becomes mandatory. This paper presents a parametric study considering volumetric and superficial heat generation in electronic equipment within racks in an aircraft. Simulations were performed using the commercial CFD Fluent code and results were compared to experimental data.
2017-09-19
Technical Paper
2017-01-2159
Federico Cappuzzo, Olivier Broca, Jeremy Leboi
Abstract To allow greater confidence in an aircraft system design in an ever increasing complex set of requirements, it becomes important to assess the interactions among systems and sub-systems earlier and with higher confidence. This study presents the Virtual Integrated Aircraft (VIA) methodology, which allows the integration of aircraft systems with virtual means. It aims to complement and precede physical integration, which is usually completed at the end of the validation and integration phase. LMS Imagine.Lab platform provides a means for applying this methodology. A simulation architecture, integrating models from different platforms, is built and simulations are run on a High Performance Computing (HPC) machine to cover multiple scenarios and therefore validate the selected architecture and pre-design in the early system development phases. A balanced selection of equipment, systems and subsystems are essential for the performance, safety, reliability and comfort.
2017-09-19
Technical Paper
2017-01-2140
Mario Marchetti, Guillaume Casteran, Celine Jobard, Bruno Saintot, Patrice Bourson, Marc Fontana
Abstract Aircrafts and runways de-icing operations with anti-icing fluids are still the most commonly used methods. In the specific case of aircrafts, they do contain glycols. Nevertheless, since two decades now, major environmental concerns are raised, along with important associated costs. Furthermore, once applied either on aircrafts or on runways, these fluids are diluted because of water brought from adverse weather conditions (rain, snow, icy conditions), conducting to increasing the freezing point from a subzero level to 0°C. The characterization of the freezing points of these fluids is indeed crucial for safety reasons. For years now, Raman spectroscopy is used for the characterization of these fluids, specifically the freezing point. But the presence of dyes did perturb the usual spectroscopic characterization.
2017-09-19
Technical Paper
2017-01-2141
Fengmei Li, Peng Ke
Abstract For the ice protection of the engine air induction part manufactured with low thermal conductivity composite material, the combined heating method using interior impingement and exterior air film has certain advantages. To study the influence of the external jet air film on the impingement characteristics of droplets, the numerical simulation method of three dimensional water droplet impingement based on Eulerian method was developed and verified by experimental data from references. The droplets impingement characteristics under three different blowing ratios and two different velocities were then investigated based on the configuration of 3D cylinder with two parallel jet holes.
2017-09-19
Journal Article
2017-01-2018
Won Il Jung, Larry Lowe, Luis Rabelo, Gene Lee, Ojeong Kwon
Abstract Operator training using a weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. In addition, governments are under intense scrutiny to provide security, yet they must also strive for efficiency and reduce spending. In other words, they must do more with less. Virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed in an economical manner. Unfortunately, the training is completed in limited scenarios without objective levels of training factors for an individual operator to optimize the weapon effectiveness. Thus, the training will not be effective. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator through usability assessments, big data, and Virtual and Constructive (VC) simulations.
2017-09-19
Technical Paper
2017-01-2016
Gareth Williams
Abstract In the year 2000 the Advisory Council for Aeronautics Research in Europe (ACARE) was established in order to provide research and policy guidance to the European Commission. “Flightpath 2050” was published in 2011 to provide a long term frame for collaborative technology research, soon followed by a “Strategic Agenda For Research and Innovation”. This agenda has been successful in providing a common and coherent reference for the 27 member states of the European Union, and others, to guide future actions in private and public research programs in order to meet societal and market needs. In June 2017 an update to the agenda was published at the Paris airshow, to reflect the rapid progress made in aviation technology and to respond multiplicity of changed circumstances which the agenda must address.
2017-09-19
Technical Paper
2017-01-2026
Narayanan Komerath, Shravan Hariharan, Dhwanil Shukla, Sahaj Patel, Vishnu Rajendran, Emily Hale
Abstract Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
2017-09-19
Journal Article
2017-01-2024
Natasha L. Schatzman, Narayanan Komerath, Ethan A. Romander
Abstract The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
2017-09-19
Technical Paper
2017-01-2019
Rakshath G Poojary, Mohammed Ali Jouhar, Abubakar K
Abstract Human Powered Helicopter which uses man power to operate. The main aim of this paper is to design commercially available vehicle for an Adventure Sporting under 5-6 lakh Indian Rupees. This structural design is extremely lightweight and strong. The product is designed in such a way that it can be easily assembled and dismantled for transportability and storage. We developed an aero-structural optimization scheme for rotor design, including an aerodynamic model with included ground effect prediction, finite-element analysis and integrated composite failure analysis, and a detailed weight estimation scheme. This was solely build on computer CAD models. This design includes the use of gear box to increase the output. The Aerodynamic analysis was done using CFD and BET (blade element theory-Bhramwell) in MATLAB.
2017-09-19
Technical Paper
2017-01-2034
Bailey Hall, Benjamin Palmer, Tyler Milburn, Luis Herrera, Bang Tsao, Joseph Weimer
Abstract Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
2017-09-19
Technical Paper
2017-01-2052
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver PhD
Abstract Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropomorphic dummies such as those outlined in 14 CFR part 25. An example test involves decelerating one or more rows of seats and allowing a lap-belted dummy to impact components in front of it, which typically include the seatback and its integrated features. Examples of head contact surfaces include video monitors, a wide range of seat back materials, and airbags. The HIC, and other injury measures such as Nij, can be calculated during such impacts. A minimum test pulse, with minimum allowable acceleration vs time boundaries, is defined as part of the regulations for a frontal impact. In this study the effects of variations in decelerations that meet the requirements are considered.
2017-09-19
Technical Paper
2017-01-2054
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver
Abstract Aircraft seating systems are evaluated utilizing a variety of impact conditions and select injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropomorphic test devices such as those outlined in 14 CFR part 25. An example test involves decelerating one or more rows of seats and allowing a lap-belted ATD to engage components in front of it, which typically include the seatback and its integrated features. Examples of head contact surfaces include video monitors, various plastic and composite fascia, and a wide range of seat back materials. The HIC, and other injury measures such as Nij, can be calculated during such impacts. It has been shown in other safety applications that the friction between a headform and contact surface can affect the test results.
2017-09-19
Technical Paper
2017-01-2053
Jim Stabile
Since oxygen has been a part of the aircraft system it has always been managed using a difficult metric to understand.......PSI. Today's technology has allowed us to efficiently and inexpensively convert PSI into a timed based metric which allows for improved oxygen management and a method which provides an interface between two important energy aircraft resources (fuel and oxygen). These resources have inverse consumption rates tied directly to the altitude of the aircraft. Using time as the management metric, the pilot can balance these 2 resources during any oxygen contingency by varying the altitude of the aircraft.. This allows for regulatory fuel savings and an increase in operational safety This program diverges from traditional thinking in that it applies an information and skill based solution to a system that has otherwise been viewed as a hardware problem.
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Abstract Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-19
Technical Paper
2017-01-2070
Nicholas Anderson, Joseph Gao, Eric Whitman, Srikanth Gururajan
Abstract Recent advances in Small Unmanned Aerial Systems (SUAS) or drone technologies has resulted in their widespread use in a number of civilian applications, such as aerial imaging, infrastructure inspection, precision agriculture, among others. While this technology is accessible for everyone, it still requires a highly skilled operator to be able to successfully operate these drones in a safe and efficient manner. At the same time, developments in Virtual/Augmented Reality (V/AR) technologies present opportunities for combining the two into novel applications and use cases by providing an intuitive interface for interacting with the drones - opening up possibilities for safe and effective use of drones by relatively untrained operators.
2017-09-19
Technical Paper
2017-01-2096
Rainer Mueller, Matthias Vette, Aaron Geenen, Tobias Masiak
Abstract Assembly processes in aircraft production are difficult to automate due to technical risks. Examples of such technical challenges include small batch sizes and large product dimensions as well as limited work space for complex joining processes and organization of the assembly tasks. A fully automated system can be expensive and requires a large amount of programming knowledge. For these reasons, ZeMA believes a semi-automated approach is the most effective means of success for optimizing aircraft production. Many methods can be considered semi automation, one of which is Human-Robot-Collaboration. ZeMA will use the example of a riveting process to measure the advantages of Human-Robot-Collaboration systems in aircraft structure assembly. In the assembly of the aircraft aft section the pressure bulkhead is mounted with a barrel section using hundreds of rivets. This assembly process is a non-ergonomic and burdensome task in which two humans must work cooperatively.
2017-09-19
Technical Paper
2017-01-2093
Thorsten Dillhoefer
Ever increasing process applications inspire us, as suppliers of aircraft, structural-assembly, and equipment to design innovative and modular, manufacturing cells in compliance with modern specification. The result is the new highly flexible Aerospace application specific robot identified as “POWER RACe”. This paper describes how benchmarks for flexible automated drilling and fastening are being achieved with the Power RACe technology platform.
2017-09-19
Technical Paper
2017-01-2077
John McClelland, Michael Morgan, Caroline McClory, Colm Higgins, Rory Collins, Adrian Murphy, Yan Jin
The need to drill several million holes per aircraft through composite and hybrid material stacks is a large challenge for the aerospace assembly process. The ability to produce high quality holes for the lowest tooling costs is at the forefront of requirements for aircraft assembly factories worldwide. Consequently, much research has been conducted into tool design and development, however, the effect of drilling platform characteristics has not been well covered in literature. Respectively, this research has compared the drilling abilities of a 5-axis precision CNC platform, a hybrid parallel kinematic machine and an articulated robotic arm fitted with a drilling module. In-process force measurement and post process hole and tool analysis methods were used to better understand the effect of static and dynamic platform characteristics on the achievable hole quality, cycle time and tool wear when drilling aerospace metal alloy stacks.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
Abstract The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C [1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentation needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2109
Kiran Thupakula
Abstract Airport environments consist of several moving objects both in the air and on the ground. In air moving objects include aircraft, UAVs and birds etc. On ground moving objects include aircraft, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purposes, a hypothetical airport traffic monitoring system is presumed that uses multiple sensors for avoiding collisions.
2017-09-19
Technical Paper
2017-01-2113
Michael Schultz
Abstract Passenger boarding is always part of the critical path of the aircraft turnaround: both efficient boarding and online prediction of the boarding progress are essential for a reliable turnaround progress. However, the boarding progress is mainly controlled by the passenger behavior. A fundamental scientific approach for aircraft boarding enables the consideration of individual passenger behaviors and operational constraints in order to develop a sustainable concept for enabling a prediction of the boarding progress. A reliable microscopic simulation approach is used to model the passenger behavior, where the individual movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. The simulation covers a broad range of behaviors and boarding strategies as well as the integration of new technologies and procedures.
2017-09-19
Technical Paper
2017-01-2107
Thorsten Kiehl, Jan Philip Speichert, Ethan Higgins, Ralf God
Abstract For an “end-to-end passenger experience that is secure, seamless and efficient” the International Air Transport Association (IATA) proposes Near Field Communication (NFC) and a single token concept to be enablers for future digital travel. NFC is a wireless technology commonly utilized in Portable Electronic Devices (PEDs) and contactless smart cards. It is characterized by the following two attributes: a tangible user interface and secured short range communication. While manufacturers are currently adapting PED settings to enable NFC in the flight mode, the integration and use of this technology in aircraft cabins still remains a challenge. There are no explicit qualification guidelines for electromagnetic compatibility (EMC) testing in an aircraft environment available and there is a lack of a detailed characterization of NFC equipped PEDs.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
Abstract The exponential increase in the number of aircrafts and air travelers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2017-09-19
Technical Paper
2017-01-2121
Greg Parlier
The US Department of Defense (DoD) operates the most complex global supply chain in the world. However, effectively integrating production planning, maintenance operations, inventory systems, and distribution policies has been a persisting strategic challenge for the logistics enterprise supporting the DoD. Neither DoD nor the Congressional Budget Office has been able to establish a well-defined linkage between Operations and Maintenance resource funding levels and the resulting readiness of military units. For nearly three decades the Government Accountability Office has attributed these inadequacies to poor demand forecasting, ineffective inventory management, and inadequate strategic planning. To address these persisting problems the US Army established the project to Transform Army Supply Chains (TASC) in order to investigate the nature, causes, and consequences of demand uncertainty and supply variability.
Viewing 1 to 30 of 5236

Filter