Criteria

Text:
Display:

Results

Viewing 241 to 270 of 19895
2017-03-28
Journal Article
2017-01-1351
Vamshi Korivi, Steven McCormick, Steven Hodges
Abstract The US Army Tank Automotive Research, Development and Engineering Center (TARDEC) has developed a unique physics based modeling & simulation (M&S) capability using Computational Fluid Dynamics (CFD) techniques to optimize automatic fire extinguishing system (AFES) designs and complement vehicle testing for both occupied and unoccupied spaces of military ground vehicles. The modeling techniques developed are based on reduced global kinetics for computational efficiency and are applicable to fire suppressants that are being used in Army vehicles namely, bromotrifluoromethane (Halon 1301), heptafluoropropane (HFC-227ea, trade name FM200), sodium-bicarbonate (SBC) powder, water + potassium acetate mixture, and pentafluoroethane (HFC-125, trade name, FE-25). These CFD simulations are performed using High Performance Computers (HPC) that enable the Army to assess AFES designs in a virtual world at far less cost than physical-fire tests.
2017-03-28
Technical Paper
2017-01-1358
Hyunbin Park
Abstract This paper presents a novel rear-view side mirror constructed with an external lens and a planar mirror to improve aerodynamics and minimize the blind spot of drivers. To resolve the drawback of the conventional side mirror, some vehicle manufacturers have lately attempted to develop a camera-based solution to replace traditional protruding side mirrors. However, driving vehicles on public roads without such side mirrors is illegal in most countries including the USA. The United States Federal Motor Vehicle Safety Standards (FMVSS) specifies that the mirror installed on the driver side should be flat and should have unit magnification. The proposed system avoids the large, protruding, external side-mirror that is currently used in present-day vehicles. Instead, it integrates this external element into the interior of the vehicle to improve aerodynamic resistance, safety, and styling.
2017-03-28
Technical Paper
2017-01-1355
Paul H. DeMarois, Bill Pappas, William G. Ballard, Jeffrey R. Williams, Gregory West
Abstract Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
2017-03-28
Technical Paper
2017-01-1406
Changliu Liu, Jianyu Chen, Trong-Duy Nguyen, Masayoshi Tomizuka
Abstract Road safety is one of the major concerns for automated vehicles. In order for these vehicles to interact safely and efficiently with the other road participants, the behavior of the automated vehicles should be carefully designed. Liu and Tomizuka proposed the Robustly-safe Automated Driving system (ROAD) which prevents or minimizes occurrences of collisions of the automated vehicle with other road participants while maintaining efficiency. In this paper, a set of design principles are elaborated as an extension of the previous work, including robust perception and cognition algorithms for environment monitoring and high level decision making and low level control algorithms for safe maneuvering of the automated vehicle.
2017-03-28
Technical Paper
2017-01-1400
Keyu Qian, Gangfeng Tan, Renjie Zhou, Binyu Mei, Wanyang XIA
Abstract Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
2017-03-28
Technical Paper
2017-01-1401
Trong-Duy Nguyen, Joseph Lull, Satish Vaishnav
Abstract In this paper, a method of improving the automated vehicle’s perception using a multi-pose camera system (MPCS) is presented. The proposed MPCS is composed of two identical colored and high frame-rate cameras: one installed in the driver side and the other in the passenger side. Perspective of MPCS varies depending on the width of vehicle type in which MPCS is installed. To increase perspective, we use the maximum width of the host vehicle as camera to camera distance for the MPCS. In addition, angular positions of the two cameras in MPCS are controlled by two separate electric motor-based actuators. Steering wheel angle, which is available from the vehicle Controller Area Network (CAN) messages, is used to supply information to the actuators to synchronize MPCS camera positions with the host vehicle steering wheel.
2017-03-28
Technical Paper
2017-01-1396
Sarah S. Sharpe, Robyn Brinkerhoff, Caroline Crump, Douglas Young
Abstract Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-1433
Enrique Bonugli, Joseph Cormier, Matthew Reilly, Lars Reinhart
The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and ‘typical’ roadway surfaces. Motorcycle helmet impacts into asphalt and concrete surfaces were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impact testing. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate an off-centered oblique collision. Helmeted Hybrid III ATD head accelerations and impact forces were measured for each test. The study was limited to a single helmet model and impact angle (30 degrees). Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and concrete in magnitude, duration and onset.
2017-03-28
Journal Article
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
Abstract This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Technical Paper
2017-01-1426
Wesley D. Grimes, Thomas H. Vadnais, Gregory A. Wilcoxson
Abstract The time/distance relationship for a heavy truck accelerating from a stop is often needed to accurately assess the events leading up to a collision. Several series of tests were conducted to document the low speed acceleration performance of a 2016 Freightliner Cascadia truck tractor equipped with a 12-speed automated manual transmission in Auto Mode. Unlike tests in previous papers, the driver never manually shifted gears. These tests included three trailer load configurations and two different acceleration rates. Data were gathered with both a VBOX and with the Detroit Diesel Diagnostic Link (DDDL) software.
2017-03-28
Technical Paper
2017-01-1424
Mark Fabbroni, Jennifer Rovt, Mark Paquette
Abstract Collision reconstruction often involves calculations and computer simulations, which require an estimation of the weights of the involved vehicles. Although weight data is readily available for automobiles and light trucks, there is limited data for heavy vehicles, such as tractor-semitrailers, straight trucks, and the wide variety of trailers and combinations that may be encountered on North American roads. Although manufacturers always provide the gross vehicle weight ratings (GVWR) for these vehicles, tare weights are often more difficult to find, and in-service loading levels are often unknown. The resulting large uncertainty in the weight of a given truck can often affect reconstruction results. In Canada, the Ministry of Transportation of Ontario conducted a Commercial Vehicle Survey in 2012 that consisted of weight sampling over 45,000 heavy vehicles of various configurations.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-1490
Silvia Faria Iombriller
Abstract The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
2017-03-28
Technical Paper
2017-01-1484
Giampiero Mastinu, Mario Pennati, Massimiliano Gobbi, Giorgio Previati, Federico Ballo
Abstract The ride comfort of three Alfa Romeo cars, namely Giulietta (1955), Alfetta (1972) and 159 (2005) has been assessed both objectively and subjectively. The three cars belong to the same market segment. The aim is to let young engineers or graduate students understand how technology has evolved and eventually learn a lesson from the assessed trend. A number of cleats have been fixed at the ground and the three cars have traversed such uneven surface. The objective assessment of the ride comfort has been performed by means of accelerometers fixed at the seat rails, additionally a special dummy developed at Politecnico di Milano has been employed. The subjective assessment has been performed by a panel of passengers. The match between objective and subjective ratings is very good. Simple mathematical models have been employed to establish a (successful) comparison between experimental and computational results. The ride comfort differs substantially among the cars.
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Abstract Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi Fu, T. Bin Juang
Abstract The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many automakers to accelerate hybrid and electric vehicle development. Generally hybrid and electric vehicles create less noise due to their compact engines (or no engine). However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from the transmission in a hybrid vehicle. The analysis includes two stages. Firstly, a detailed finite element (FE) model of the transmission is constructed, and case surface velocities are calculated utilizing motor electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-1061
Jiachen Zhai, Ma Conggan
Abstract Electric vehicle driving permanent magnet synchronous motor has a wide speed range and load changes, with abundant harmonic currents, and its eccentric form is complex, which all result in poor sound quality and abnormal noise problems becoming increasingly prominent. To make a systematic and thorough study of the centralized drive permanent magnet synchronous motor (PMSM) is significant to ameliorate the sound quality and solve noise problems. MATLAB-based modeling technology, SPSS software, and the establishment of sound quality evaluation model for the centralized drive PMSM has a crucial reference value on the research and development of the electric vehicle driving permanent magnet synchronous motor. As for the sound quality of centralized drive PMSM, firstly, in order to get objective parameter values, evaluation models of objective parameters based on psychological acoustics should be established after the collection of the sound samples.
2017-03-28
Technical Paper
2017-01-1035
Xingyu Xue, John Rutledge
Abstract Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Abstract Improving fuel economy has been a key focus across the automotive industry for several years if not decades. For heavy duty commercial vehicles, the benefits from minor gains in fuel economy can lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG standards which closely translate to vehicle fuel economy. For current state of the art fuel economy technologies, incremental gains are so miniscule that measurements on the vehicle are inadequate to quantify the benefits. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynamometers are used, however, there is an associated variability even with these tests due to factors such as part to part differences, deterioration, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Journal Article
2017-01-0896
Philip Griefnow, Jakob Andert, Dejan Jolovic
Abstract The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
2017-03-28
Technical Paper
2017-01-1203
Takashi Inamoto, Lawrence Alger
Abstract Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
2017-03-28
Technical Paper
2017-01-1205
Letao Zhu, Zechang Sun, Xuezhe Wei, Haifeng Dai
Abstract To monitor and guarantee batteries of electric vehicles in normal operation, battery models should be established primarily for the further application in battery management system such as parameter identification and state estimation including state of charge (SOC), state of health (SOH) and so on. In this paper, an improved battery modeling method is proposed which is based on the recursive least square (RLS) algorithm employing an optimized objective function. The proposed modified objective function not only includes the normal sum of voltage error squares between measured voltage and model output voltage but also introduces a new variable representing the sum of first order difference error squares for both kinds of voltages. This specialty can undoubtedly guarantee better agreement for the measured output and the model output. The battery model used in this paper is selected to be the conventional second order equivalent circuit model.
2017-03-28
Technical Paper
2017-01-1207
Satyam Panchal, Scott Mathewson, Roydon Fraser, Richard Culham, Michael Fowler
Abstract Lithium-ion batteries, which are nowadays common in laptops, cell phones, toys, and other portable electronic devices, are also viewed as a most promising advanced technology for electric and hybrid electric vehicles (EVs and HEVs), but battery manufacturers and automakers must understand the performance of these batteries when they are scaled up to the large sizes needed for the propulsion of the vehicle. In addition, accurate thermo-physical property input is crucial to thermal modeling. Therefore, a designer must study the thermal characteristics of batteries for improvement in the design of a thermal management system and also for thermal modeling. This work presents a purely experimental thermal characterization in terms of measurement of the temperature gradient and temperature response of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration.
2017-03-28
Technical Paper
2017-01-1210
R. Dyche Anderson, Regan Zane, Gregory Plett, Dragan Maksimovic, Kandler Smith, M. Scott Trimboli
Abstract A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.
2017-03-28
Technical Paper
2017-01-1209
Zhichao Luo, Xuezhe Wei
Abstract Nowadays, wireless power transfer (WPT) gradually prevails and many researchers have devoted themselves to it because it is a safe, convenient and reliable way for recharging electric vehicles comparing to the conventional plug-in contact-based methods. Square coils are commonly used in WPT systems. However, there is few theoretical analysis of self- and mutual inductance of square coils between two magnetic shielding materials. In this paper, in order to study the spatial magnetic field distribution, the analytical model of n-turn square planar spiral coils between two semi-infinite multilayer media is developed based on the Maxwell equations and the Dual Fourier transformation. And then, by means of surface integrals, the self- and mutual inductance can be carried out, with respect to the main parameters of the WPT systems such as the operating frequency, the geometry feature of the coupling coils and the properties of the multilayer media.
Viewing 241 to 270 of 19895