Criteria

Text:
Display:

Results

Viewing 241 to 270 of 20019
2017-03-28
Technical Paper
2017-01-1400
Keyu Qian, Gangfeng Tan, Renjie Zhou, Binyu Mei, Wanyang XIA
Abstract Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Abstract Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Abstract Improving fuel economy has been a key focus across the automotive industry for several years if not decades. For heavy duty commercial vehicles, the benefits from minor gains in fuel economy can lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG standards which closely translate to vehicle fuel economy. For current state of the art fuel economy technologies, incremental gains are so miniscule that measurements on the vehicle are inadequate to quantify the benefits. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynamometers are used, however, there is an associated variability even with these tests due to factors such as part to part differences, deterioration, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-1260
Gianmarco Galmarini, Stefano Dell'Agostino, Massimiliano Gobbi, Giampiero Mastinu
Abstract Apollo is the name of a solar prototype vehicle of Politecnico di Milano (Technical University of Milan) that has been conceived and employed for the Shell Eco-marathon® Europe competition (SEM). The paper introduces the concept design, the detailed design, the construction, the indoor tests, the successful employment at SEM and the end-of-life of the prototype. Apollo is a three-wheeler with a single driving and steering wheel at the rear. A wing with solar cells provides part of the electric energy required for running. The conceptual design started from the accommodation of the driver inside the vehicle. A number of iterations focusing on CFD (computation fluid dynamics) and wind-tunnel tests allowed to refine the total drag to less than 2N at 35 km/h. The tyre characteristic was measured on a drum. The camber of front wheels was set to 4 deg which provided the least rolling resistance.
2017-03-28
Technical Paper
2017-01-1259
Eduardo D. Marquez, John Stevenson, Ethan Dietrich, Douglas Nelson, Christopher Flake, Alexander Neblett, Samuel Reinsel
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
2017-03-28
Technical Paper
2017-01-1261
Mark Woodland, Dillon Savage, Patrick Paulus, Aaron Eliason, Cade Smith, Dan Cordon, Steven W. Beyerlein
Abstract The University of Idaho has sponsored entries in the Collegiate Design Series (CDS) Clean Snowmobile Competition since 2001. During this period, a topic of ongoing concern among its student leaders is project and knowledge management. The need for holistic implementation of specific methods/tools is underscored by survey feedback from current CDS teams and University of Idaho alumni, many now employed in the automotive/motorsports industry. This paper details local implementation of nine developmentally appropriate practices for CDS teams composed of students at multiple levels in their academic study (underclassmen, seniors, and graduate students).
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
Abstract For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
Abstract The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free, or unloaded, shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque of a TLTB at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1298
Kamlesh Yadav, Abhishek Sinha, Rajdeep Singh Khurana
Abstract Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
2017-03-28
Technical Paper
2017-01-0781
Philip Zoldak, Jeffrey Naber
Abstract The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
2017-03-28
Technical Paper
2017-01-0861
Balasubramanian N., Karthick Durairaj, Jayabalan Sethuraman
Abstract Asian countries hold a vast majority of the global two-wheeler population. Currently majority of these two wheelers are fueled by carburetors owing to their low cost and ease of maintenance. As these countries try to adopt emission norms similar to that of Euro 6 in a few years from now, they will be migrating to an injection system like port fuel injection (PFI), as it offers good control over emissions by using closed loop corrections, based on the exhaust lambda feedback. Stanadyne R&D has developed an innovative injection system that can be applied for such port fuel injection in two-wheelers. In this innovative design, the pump and injector are integrated into a single unit, making the system simple, compact and less expensive. The integrated injector uses a solenoid and spring arrangement, for pressurizing the fuel in a small chamber, and consumes less current. The pressurized fuel is then injected through orifice to produce spray in the intake port.
2017-03-28
Technical Paper
2017-01-1123
Jinyu Zhang, Yaodong Hu, Fuyuan Yang, Chao Xu
Abstract Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
2017-03-28
Technical Paper
2017-01-1180
Stefan Brandstätter, Michael Striednig, David Aldrian, Alexander Trattner, Manfred Klell, Tomas Dehne, Christoph Kügele, Michael Paulweber
Abstract The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1110
Muammer Yolga, Markus Bachinger
Abstract With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
2017-03-28
Technical Paper
2017-01-1107
Christoph Andre Malonga Makosi, Stephan Rinderknecht, Ralf Binz, Frank Uphaus, Frank Kirschbaum
Abstract In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
2017-03-28
Technical Paper
2017-01-0190
Neelakandan Kandasamy, Steve Whelan
Abstract The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature.
2017-03-28
Technical Paper
2017-01-0191
Gene Titov, Jason Aaron Lustbader
Abstract The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control the system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate.
2017-03-28
Technical Paper
2017-01-0189
Song Lan, Cedric Rouaud, Richard Stobart, Rui Chen, Zhijia Yang, Dezong Zhao
Abstract This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
2017-03-28
Technical Paper
2017-01-0186
Cory J. Kreutzer, John Rugh, Jeff Tomerlin
Abstract Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
2017-03-28
Journal Article
2017-01-1351
Vamshi Korivi, Steven McCormick, Steven Hodges
Abstract The US Army Tank Automotive Research, Development and Engineering Center (TARDEC) has developed a unique physics based modeling & simulation (M&S) capability using Computational Fluid Dynamics (CFD) techniques to optimize automatic fire extinguishing system (AFES) designs and complement vehicle testing for both occupied and unoccupied spaces of military ground vehicles. The modeling techniques developed are based on reduced global kinetics for computational efficiency and are applicable to fire suppressants that are being used in Army vehicles namely, bromotrifluoromethane (Halon 1301), heptafluoropropane (HFC-227ea, trade name FM200), sodium-bicarbonate (SBC) powder, water + potassium acetate mixture, and pentafluoroethane (HFC-125, trade name, FE-25). These CFD simulations are performed using High Performance Computers (HPC) that enable the Army to assess AFES designs in a virtual world at far less cost than physical-fire tests.
2017-03-28
Journal Article
2017-01-1352
David Gardiner
Abstract This paper presents an experimental study of the vapour space flammability of Fuel Ethanol (a high-ethanol fuel for Flexible Fuel Vehicles, commonly known as “E85”) and gasoline containing up to 10% ethanol (commonly known as “E10”). The seasonal minimum vapour pressure limits in specifications for automotive spark ignition fuels are intended, in part, to minimize the formation of flammable mixtures in the headspace of vehicle fuel tanks. This is particularly important at subzero temperatures, where the headspace mixture may not be rich enough to prevent combustion in the presence of an ignition source such as a faulty electrical fuel pump. In the current study, the upper temperature limits of flammability were measured for field samples of “E85” and “E10”, and a series of laboratory-prepared blends of denatured ethanol, Before Oxygenate Blending (BOB) gasoline, and n-butane.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
Abstract SAE J211 provides no definitive specification as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for impact data. Accordingly, a 3-2-2-2 array (nine-accelerometer-package or NAP) of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th-percentile-male ATD headform and compared in a variety of impact events and multibody simulations. Appropriate low-pass digital filter cutoff frequencies for differentiating the angular rate sensor data into angular accelerations were sought via residual analysis in accordance with current SAE J211 guidelines.
2017-03-28
Journal Article
2017-01-0441
Zhenyu Wang, Mei Zhuang
Abstract A numerical study on sunroof noise reduction is carried out. One of the strategies to suppress the noise is to break down the strong vortices impinging upon the trailing edge of the sunroof into smaller eddies. In the current study, a serrated sunroof trailing edge with sinusoidal profiles of wavelengths is investigated for the buffeting noise reduction. A number of combinations of wavelengths and amplitudes of sinusoidal profiles is employed to examine the effects of trailing edge serrations on the noise reduction. A generic vehicle model is used in the study and a straight trailing edge is considered as a baseline. The results indicate that the trailing edge serration has a significant impact on the sound pressure level (SPL) in the vehicle cabin and it can reduce the SPL by up to 10~15 dB for the buffeting frequency.
2017-03-28
Journal Article
2017-01-1126
Yu Mao, Shuguang Zuo, Xudong Wu
Abstract Due to coupling of in-wheel motor and wheel/tire, the electric wheel system of in-wheel motor driven vehicle is different from tire suspension system of internal combustion engine vehicle both in the excitation source and structural dynamics. Therefore emerging dynamic issues of electric wheel arouse attention. Longitudinal vibration problem of electric wheel system in starting condition is studied in this paper. Vector control system of permanent magnet synchronous hub motor considering dead-time effect of the inverter is primarily built. Then coupled longitudinal-torsional vibration model of electric wheel system is established based on rigid ring model and dynamic tire/road interface. Inherent characteristics of this model are further analyzed. The vibration responses of electric wheel system are simulated by combining electromagnetic torque and the vibration model.
2017-03-28
Technical Paper
2017-01-0090
Ondrej Santin, Jaroslav Beran, Jaroslav Pekar, John Michelini, Junbo Jing, Steve Szwabowski, Dimitar Filev
Abstract Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
Viewing 241 to 270 of 20019