Criteria

Text:
Display:

Results

Viewing 181 to 210 of 19860
2017-03-28
Technical Paper
2017-01-1199
Khalid Khan, Bin Zhou, Amir Rezaei
Abstract A high voltage battery is an essential part of hybrid electric vehicles (HEVs). It is imperative to precisely estimate the state of charge (SOC) and state of health (SOH) of battery in real time to maintain reliable vehicle operating conditions. This paper presents a method of estimating SOC and SOH through the incorporation of current integration, voltage translation, and Ah-throughput. SOC estimation utilizing current integration is inadequate due to the accumulation of errors over the period of usage. Thus voltage translation of SOC is applied to rectify current integration method which improves the accuracy of estimation. Voltage translation data is obtained by subjecting the battery to hybrid pulse power characterization (HPPC) test. The Battery State of Health was determined by semi-empirical model combined with accumulated Ah-throughput method. Battery state of charge was employed as an input to estimate damages accumulated to battery aging through a real-time model.
2017-03-28
Technical Paper
2017-01-0059
Barbaros Serter, Christian Beul, Manuela Lang, Wiebke Schmidt
Abstract Today, highly automated driving is paving the road for full autonomy. Highly automated vehicles can monitor the environment and make decisions more accurately and faster than humans to create safer driving conditions while ultimately achieving full automation to relieve the driver completely from participating in driving. As much as this transition from advanced driving assistance systems to fully automated driving will create frontiers for re-designing the in-vehicle experience for customers, it will continue to pose significant challenges for the industry as it did in the past and does so today. As we transfer more responsibility, functionality and control from human to machine, technologies become more complex, less transparent and making constant safe-guarding a challenge. With automation, potential misuse and insufficient system safety design are important factors that can cause fatal accidents, such as in TESLA autopilot incident.
2017-03-28
Technical Paper
2017-01-0479
Soichi Hareyama, Ken-ichi Manabe, Makoto Nakashima, Takayuki Shimodaira, Akio Hoshi
Abstract This investigation describes a method for estimating the absolute lock effect in bolted joint. Observation results of loosening phenomenon in industrial vehicle are analyzed for the linear relation by the proposed regression formula. Based on the relation, in early stages of the development test, the rate of clamping force decrease can be estimated accurately after prolonged operation by measuring the clamping force behavior. The tendency to decrease is observed about the depression type and working load type loosening. For evaluation design bases, the residual clamping force estimation chart is established. The L-N (Loosening Lifetime - Number of Cycles to Loosening N) diagram is proposed for the loosening lifetime prediction for working load type loosening also. Using the loosening damage (cumulative decrease of clamping force) and L-N diagram, the lifetime to loosening failure can be predicted accurately for the locking device and method as an absolute evaluation.
2017-03-28
Journal Article
2017-01-0001
Ming Cheng, Bo Chen
Abstract This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
2017-03-28
Journal Article
2017-01-0126
Joshua W. Finn, John R. Wagner
Abstract Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
2017-03-28
Journal Article
2017-01-1595
Mustafa Ali Arat, Hans-Martin Duringhof, Johan Hagnander, Eduardo L. Simoes
Abstract This paper presents a brake control strategy with a novel approach to the allocation of actuator effort in an electric vehicle. The proposed strategy relies on a combination of the conventional hydraulic braking system and the electric machine in order to improve braking performance. The higher response frequency of the electric machine is paired with the additional braking torque employed by the hydraulic brakes using an integrated control allocation strategy, which allows for a constant availability of a faster and more accurate modulation of both wheel torque and wheel speed. Therefore, the availability of an electric machine as a fast longitudinal actuator yields to an improved tracking of the desired wheel slip, especially when compared to the hydraulic actuators used in traditional braking applications.
2017-03-28
Technical Paper
2017-01-1562
Junyu Zhou, Chao Liu, Jan Kubenz, Günther Prokop
Abstract This paper describes a new hybrid algorithm for multibody dynamics in vehicle system dynamics which combines the advantages of both embedding technique algorithm and augmented formulation algorithm. An approach to vehicle dynamics modeling based on the hybrid algorithm is presented. Embedding technique algorithm has relatively small number of equations of motion. With help of this technique, an enhanced parametric vehicle dynamics model can be built, representing characteristic curves of suspension comprised in kinematic and compliance. Small number of equations enables the vehicle dynamics model to be simulated very efficiently. In comparison to embedding technique algorithm, the main benefit of augmented formulation algorithm is relatively simple for computer programming. With help of augmented formulation algorithm, the structure of the vehicle dynamic model can be easily extended.
2017-03-28
Technical Paper
2017-01-1580
Smitha Vempaty, Yuping He
Abstract Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
2017-03-28
Technical Paper
2017-01-1571
Kevin McLaughlin, Jonah Shapiro, HyungJu Kwon
Abstract An approach to electric steering control and tuning is developed using vehicle dynamics and quantitative steering objectives. The steering objective chosen is the torque vs. lateral acceleration target for the driver termed the “steering gain”. Two parameters are derived using vehicle dynamics that substantially determine driver feel: the vehicle’s “manual gain” (total steering torque divided by lateral acceleration) and the vehicle’s lateral acceleration gain (lateral acceleration divided by steering angle). Lateral acceleration gain is a well-known quantity in the literature but “manual gain” is a nonstandard point of view for steering control systems. The total gain inside the controller is the loop gain; generally, the higher the loop gain, the better the controller rejects unwanted effects such as friction. For a typical torque-input electric steering topology, it is shown that the relationship between loop gain and steering gain is unique.
2017-03-28
Technical Paper
2017-01-1575
Andrei Keller, Sergei Aliukov, Vladislav Anchukov
Abstract Trucks are one of the most common modes of transport and they are operated in various road conditions. As a rule, all-wheel drive trucks are equipped with special systems and mechanisms to improve their off-road capability and overall efficiency. The usage of blocked mechanisms for power distribution is one of the most popular and effective ways to improve the off-road vehicle performance. However, the lock of differential may adversely affect the stability and control of vehicle because of the unobvious redistribution of reactions acting on wheels, which consequently leads to poor performance and safety properties. Problems of rational distribution of power in transmissions of all-wheel drive vehicles, as well as research in the field of improving directional stability and active safety systems are among the priorities in modern automotive industry.
2017-03-28
Technical Paper
2017-01-1588
Yucheng Liu, Collin Davenport, James Gafford, Michael Mazzola, John Ball, Sherif Abdelwahed, Matthew Doude, Reuben Burch
Abstract A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
2017-03-28
Technical Paper
2017-01-1224
Ryota Kitamoto, Shinnosuke Sato, Hiromichi Nakamura, Atsushi Amano
Abstract A new fuel cell voltage control unit (FCVCU) has been developed for a new fuel cell vehicle (FCV). In order to simultaneously reduce the electric powertrain size and increase the driving motor power, the FCVCU is needed to boost the voltage supplied from the fuel cell (FC) stack to the driving motor. The FCVCU circuit configuration has four single-phase chopper circuits arranged in parallel to form a 4-phase interleaved circuit. The intelligent power module (IPM) is a full SiC IPM, the first known use to date in a mass production vehicle, and efficiency has been enhanced by making use of the effects of the increased frequency to reduce both the size of the unit and the loss from passive parts. In addition, a coupled inductor was used to reduce the inductor size. As a result, the inductor volume per unit power was reduced approximately 30% compared to the previous VCU inductor.
2017-03-28
Technical Paper
2017-01-1189
Tsuyoshi Maruo, Masashi Toida, Tomohiro Ogawa, Yuji Ishikawa, Hiroyuki Imanishi, Nada Mitsuhiro, Yoshihiro Ikogi
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell vehicles (FCVs) since 1992. As part of a demonstration program, TMC launched the FCHV-adv in 2008, which established major technical improvements in key performance areas such as efficiency, driving range, durability, and operation in sub-zero conditions. However, to encourage commercialization and widespread adoption of FCVs, further improvements in performance were required. During sub-zero operating conditions, the FC system output power was lower than under normal operating conditions. The FC stack in the FCHV-adv needed to dry the electrolyte membrane to remove unneeded water from the stack. This increased the stack resistance and caused low output power. In December 2014, TMC launched the world’s first commercially available FCV named the Mirai, which greatly improved output power even after start-up in sub-zero conditions.
2017-03-28
Technical Paper
2017-01-1161
Erik J. Christen, Tim Blatchley, Mark Jacobson, N Khalid Ahmed, Qiuming Gong
Abstract Integration of a new, complex technology which crosses powertrain system boundaries (and thereby involves multiple organizations), at the optimum cost-attribute balance, is a complex task. An example of such a technology is a Vapor-Compression Heat Pump (VCHP) system. A VCHP system uses a vapor-compression refrigeration cycle to ‘pump’ heat from ambient into the cabin. This system can be used to supplement or replace other less efficient heating systems (e.g. engine, LV-PTC air heater, HV-PTC coolant heater, etc.) - which will improve fuel economy. The use of a heat pump system impacts several primary attributes, including heating, cooling, fuel economy, and electric range. These attributes must be balanced in an ideal fashion against the substantial expense, if a VCHP is to be selected for use in a particular vehicle. This paper walks through the value equation for the VCHP from start to end, addressing potential concerns and opportunities.
2017-03-28
Technical Paper
2017-01-1158
Tomohiro fukazu, Yuhei Matsuo
Abstract An electric powertrain has been developed for Honda’s 2017 model hybrid SUV. The electric powertrain developed for the hybrid model consists of a Twin Motor Unit (TMU), a high-output front motor mated to a 7-speed DCT for efficient power generation, a Power Control Unit (PCU), and an Intelligent Power Unit (IPU). The TMU is made up of two motor units able to drive the left and right wheels independently, as employed in Honda’s flagship sedan and high-end sports cars. The PCU delivers electric power to the motors, and the IPU stores drive torque and regenerative energy. The high-output front motor and TMU are equipped with sports hybrid SH-AWD components, as used in existing mass-production models, in order to realize handling performance equaling that of the base SUV. Positioned under the floor outside the passenger cabin, the PCU has a newly developed 3-in-1 inverter, motor control ECU, and 12V DC-DC converter built-in, and is housed in a fully waterproof structure.
2017-03-28
Technical Paper
2017-01-1171
Sury Janarthanam, Neil Burrows, Bhaskara Rao Boddakayala
Abstract Automotive vehicle manufactures are implementing electrification technologies in many vehicle line-ups to improve fuel economy and meet emission standards. As a part of electrification, High Voltage (HV) battery packs are integrated alongside internal combustion engines. Recent generation HV batteries allow extensive power usage, by allowing greater charge and discharge currents and broader State of Charge (SOC) ranges. Heat generated during the charge-discharge cycles must be managed effectively to maintain battery cell performance and life. This situation requires a cooling system with higher efficiency than earlier generation electrified powertrains. There are multiple thermal solutions for cooling HV battery packs including forced air, liquid, direct refrigerant, and passive cooling. The most common types of HV battery pack cooling, for production vehicles, are air cooled using cabin interior air and liquid cooled using powertrain cooling systems.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Journal Article
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
Abstract This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-1401
Trong-Duy Nguyen, Joseph Lull, Satish Vaishnav
Abstract In this paper, a method of improving the automated vehicle’s perception using a multi-pose camera system (MPCS) is presented. The proposed MPCS is composed of two identical colored and high frame-rate cameras: one installed in the driver side and the other in the passenger side. Perspective of MPCS varies depending on the width of vehicle type in which MPCS is installed. To increase perspective, we use the maximum width of the host vehicle as camera to camera distance for the MPCS. In addition, angular positions of the two cameras in MPCS are controlled by two separate electric motor-based actuators. Steering wheel angle, which is available from the vehicle Controller Area Network (CAN) messages, is used to supply information to the actuators to synchronize MPCS camera positions with the host vehicle steering wheel.
2017-03-28
Technical Paper
2017-01-1400
Keyu Qian, Gangfeng Tan, Renjie Zhou, Binyu Mei, Wanyang XIA
Abstract Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
2017-03-28
Technical Paper
2017-01-1406
Changliu Liu, Jianyu Chen, Trong-Duy Nguyen, Masayoshi Tomizuka
Abstract Road safety is one of the major concerns for automated vehicles. In order for these vehicles to interact safely and efficiently with the other road participants, the behavior of the automated vehicles should be carefully designed. Liu and Tomizuka proposed the Robustly-safe Automated Driving system (ROAD) which prevents or minimizes occurrences of collisions of the automated vehicle with other road participants while maintaining efficiency. In this paper, a set of design principles are elaborated as an extension of the previous work, including robust perception and cognition algorithms for environment monitoring and high level decision making and low level control algorithms for safe maneuvering of the automated vehicle.
2017-03-28
Technical Paper
2017-01-1514
Renan F. Soares, Kevin P. Garry, Jennifer Holt
Abstract The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
2017-03-28
Technical Paper
2017-01-1561
Anton A. Tkachev, Nong Zhang
Abstract Rollover prevention is one of the prominent priorities in vehicle safety and handling control. A promising alternative for roll angle cancellation is the active hydraulically interconnected suspension. This paper represents the analytical model of a closed circuit active hydraulically interconnected suspension system followed by the simulation. Passive hydraulically interconnected suspension systems have been widely discussed and studied up to now. This work specifically focuses on the active hydraulically interconnected suspension system. Equations of motion of the system are formalized first. The system consists of two separate subsystems that can be modeled independently and further combined for simulation. One of the two subsystems is 4 degrees of freedom half-car model which simulates vehicle lateral dynamics and vehicle roll angle response to lateral acceleration in particular.
2017-03-28
Technical Paper
2017-01-1555
Mirosław Jan Gidlewski, Krystof JANKOWSKI, Andrzej MUSZYŃSKI, Dariusz ŻARDECKI
Abstract Lane change automation appears to be a fundamental problem of vehicle automated control, especially when the vehicle is driven at high speed. Selected relevant parts of the recent research project are reported in this paper, including literature review, the developed models and control systems, as well as crucial simulation results. In the project, two original models describing the dynamics of the controlled motion of the vehicle were used, verified during the road tests and in the laboratory environment. The first model - fully developed (multi-body, 3D, nonlinear) - was used in simulations as a virtual plant to be controlled. The second model - a simplified reference model of the lateral dynamics of the vehicle (single-body, 2D, linearized) - formed the basis for theoretical analysis, including the synthesis of the algorithm for automatic control. That algorithm was based on the optimal control theory.
2017-03-28
Technical Paper
2017-01-1556
Jianbo Lu, Li Xu, Daniel Eisele, Stephen Samuel, Matthew Rupp, Levasseur Tellis
Abstract This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
2017-03-28
Technical Paper
2017-01-1565
Xiangkun He, Kaiming Yang, Xuewu Ji, Yahui Liu, Weiwen Deng
Abstract A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
2017-03-28
Technical Paper
2017-01-1585
Renxie Zhang, Lu Xiong, Zhuoping Yu, Wei Liu
Abstract A dynamic controller is designed for unmanned skid-steering vehicle. The vehicle speed is controlled through driving torque of engine to achieve the desired vehicle speed and the steering is controlled through hydraulic braking on each side of the vehicle to achieve the desired yaw rate. Contrary to the common approaches by considering non-holonomic constraints, tire slip and saturation of actuators torque influencing the driving and braking are considered, based on the analysis of vehicle dynamic model and nonlinear tire model. Hence, with conditional integrators, the dynamic controller overcoming integral saturation is designed to ensure the accurate tracking for desired signals under influence of tire forces and constraint of actuators. In addition, the exponential kind filter is utilized to enhance the ability of smoothing noise of wheel speed. To perform small radius cornering maneuvers, a dynamic control strategy for steering when vehicle speed is zero is also designed.
2017-03-28
Technical Paper
2017-01-1591
Haotian Cao, Xiaolin Song, Zhi Huang
Abstract Generally speaking, lateral steering control method which ensures a good performance in tracking quality and handle quality simultaneously for autonomous vehicle is a changeling task. In order to keep the vehicle to stay safe when facing with severe situations such as an emergency lane change, a switched MPC lateral steering controller, which is on the basis of the stability feature of the vehicle, is presented in this paper. First, a MPC steering controller based on the 3DOF nonlinear vehicle model is derived, a comparative study of different vehicle models for MPC prediction are made. It proves that the presented MPC controller based on 3DOF nonlinear vehicle model possesses an advantage of balancing the conflicts between the tracking quality and handling quality of the vehicle.
2017-03-28
Technical Paper
2017-01-0063
John Botham, Gunwant Dhadyalla, Antony Powell, Peter Miller, Olivier Haas, David McGeoch, Arun Chakrapani Rao, Colin O'Halloran, Jaroslaw Kiec, Asif Farooq, Saman Poushpas, Nick Tudor
Abstract PICASSOS was a UK government funded programme to improve the ability of automotive supply chains to develop complex software-intensive systems with high safety assurance and at an acceptable cost. This was executed by a consortium of three universities and five companies including an automotive OEM and suppliers. Three major elements of the PICASSOS project were: use of automated model based verification technology utilising formal methods; application of this technology in the context of ISO 26262; and evaluation to measure the impact of this approach to inform key management decisions on the costs, benefits and risks of applying this technology on live projects. The project spanned system level design and software development. This was achieved by using a unified model based process incorporating SysML at the system level and using Simulink and Stateflow auto-coded into C at the software level.
Viewing 181 to 210 of 19860