Criteria

Text:
Display:

Results

Viewing 181 to 210 of 19864
2017-03-28
Technical Paper
2017-01-0108
Zaydounr Y. Rawashdeh, Trong-Duy Nguyen, Anoop Pottammal, Rajesh Malhan
Abstract In this work, Dedicated Short Range Communication (DSRC) capabilities combined with classical autonomous vehicles’ on-board sensors (Camera) are used to trigger a Comfortable Emergency Brake (CEB) for urban traffic light intersection scenario. The system is designed to achieve CEB in two phases, the Automated Comfortable Brake (ACB) and the full stop Automated Emergency Brake (AEB). The ACB is triggered first based on the content of the Signal Phase and Timing (SPaT) / Map data (MAP) messages received from the Road Side Unit (RSU) at larger distances. And, once the traffic light becomes in the detection field of view of the camera, the output of the Camera-based Traffic Light Detection (TLD) and recognition software is fused with the SPaT/MAP content to decide on triggering the full stop AEB. In the automated vehicle, the current traffic light color and duration received in the SPaT message is parsed; and compared with the TLD output for color matching.
2017-03-28
Technical Paper
2017-01-0114
Jorge De-J. Lozoya Santos, J. C. Tudon-Martinez
Abstract The project consists on the mechanical and electronic instrumentation of an existing vehicle (built at Universidad de Monterrey for the SAE Supermileage Competition) to be able to control its steering, braking and throttle systems “by wire”. Insight to the stages of turning the vehicle into an autonomous one is presented. This includes identification of the current mechanical properties, choosing adequate components and the use of a simulation to allow early work on the software involving cameras and motors to provide autonomy to the vehicle. Using software in the loop methodology mathematical models of the dynamics of the vehicle are run in Simulink and update the position and orientation of the 3D model of the vehicle in V-REP, a robot simulator.
2017-03-28
Technical Paper
2017-01-0117
Raja Sekhar Dheekonda, Sampad Panda, Md Nazmuzzaman khan, Mohammad Hasan, Sohel Anwar
Accuracy in detecting a moving object is critical to autonomous driving or advanced driver assistance systems (ADAS). By including the object classification from multiple sensor detections, the model of the object or environment can be identified more accurately. The critical parameters involved in improving the accuracy are the size and the speed of the moving object. All sensor data are to be used in defining a composite object representation so that it could be used for the class information in the core object’s description. This composite data can then be used by a deep learning network for complete perception fusion in order to solve the detection and tracking of moving objects problem. Camera image data from subsequent frames along the time axis in conjunction with the speed and size of the object will further contribute in developing better recognition algorithms.
2017-03-28
Technical Paper
2017-01-1723
Suresh Kumar Kandreegula, Jham Tikoliya, Hemant Nishad
Abstract As the commercial vehicle engine heads towards the next generation of stringent emissions and fuel economy targets, all aspects of the internal combustion engine are subject to close scrutiny. Inherently, ICE’s are very inefficient, with efficiency varying between 18 ~ 40%. This efficiency is a function of friction losses, pumping losses and wasted heat. Currently, automotive OEM’s globally are hard at work trying to attack these issues with various solutions to achieve incremental gains. The leading trend is getting more power from less space, also known as downsizing. Due to the importance of downsizing, direct injection and other technologies, it is imperative to highlight another key area, where OEM’s are expanding their limits to gain those extra few kilometers per liter of fuel i.e. weight reduction. From an emissions perspective, it is estimated that every 50 kg of weight reduced from an average 1,500 kg vehicle cuts CO2 emissions by 4 ~ 5 grams.
2017-03-28
Technical Paper
2017-01-1727
Yumin Lin, Bo-Chiuan Chen, Hsien-Chi Tsai, Bi-Cheng Luan
Abstract A model-based sensor fault detection algorithm is proposed in this paper to detect and isolate the faulty sensor. Wheel speeds are validated using the wheel speed deviations before being employed to check the sensor measurements of the vehicle dynamics. Kinematic models are employed to estimate yaw rate, lateral acceleration, and steering wheel angle. A Kalman filter based on a point mass model is employed to estimate longitudinal speed and acceleration. The estimated vehicle dynamics and sensor measurements are used to calculate the residuals. Adaptive threshold values are employed to identify the abnormal increments of residuals. Recursive least square method is used to design the coefficients of the expressions for adaptive threshold values, such that the false alarms caused by model uncertainties can be prevented. Different combinations of estimations are employed to obtain 18 residuals.
2017-03-28
Technical Paper
2017-01-1730
Gridsada Phanomchoeng, Sunhapos Chantranuwathana
Abstract Nowadays, the tendency of people using bicycles as the way of transportation has increased as well as the tendency of the bicycle accidents. According to the research of National Highway Traffic Safety Administration (NHTSA), National Survey on Bicyclist and Pedestrian Attitude and Behavior, the major root causes of bicycle accidents are from the road surface condition. Thus, this work has developed the system to detect the road surface condition. The system utilizes the laser and camera to measure the height of road. Then, with the information of the road height and bicycle speed, the road surface condition can be classified into 3 categories due to severe condition of the road. For the secure road, cyclists could safely ride on it. For the warning road, cyclists need to slow down the speed. Lastly, for the dangerous road, cyclists have to stop their bicycles.
2017-03-28
Technical Paper
2017-01-0075
Shinya Kitayama, Toshiyuki Kondou, Hirokazu Ohyabu, Masaaki Hirose, Haneda Narihiro, Ryuta Maeda
Abstract In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
2017-03-28
Technical Paper
2017-01-0068
Pablo Sauras-Perez, Andrea Gil, Jasprit Singh Gill, Pierluigi Pisu, Joachim Taiber
Abstract In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
2017-03-28
Journal Article
2017-01-0837
Panos Sphicas, Lyle M Pickett, Scott Skeen, Jonathan Frank, Tommaso Lucchini, David Sinoir, Gianluca D'Errico, Kaushik Saha, Sibendu Som
Abstract Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
2017-03-28
Technical Paper
2017-01-1186
Chunmei Wang, Shinichi Hirano
Abstract This study investigates a system and a method to enhance fuel cell vehicle robustness during vehicle start/stop cycle by mitigating cathode half-cell potential spikes. Multiple dynamic hydrogen reference electrodes were installed in the fuel cell under test to observe changes of anode and cathode half-cell potentials during simulated system startup and shutdown conditions. Multiple reference electrodes were used to measure localized anode and cathode half-cell potentials in an active area. A 1.4-1.8 V half-cell potential spike at the cathode in the startup condition was observed due to a hydrogen/air boundary formed within the anode flow field. Various system solutions have been studied to contain the cathode half-cell potential spikes, such as purging with inert gas, or inserting a shunt resistor as a shorting component between the anode and the cathode. In this study, a method of connecting an electrical load prior to flowing hydrogen fuel to the cell was tested.
2017-03-28
Technical Paper
2017-01-1180
Stefan Brandstätter, Michael Striednig, David Aldrian, Alexander Trattner, Manfred Klell, Tomas Dehne, Christoph Kügele, Michael Paulweber
Abstract The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
2017-03-28
Technical Paper
2017-01-1253
Somnath Sengupta, Chethan Gururaja, Sushant Hingane, Prajwal A K, Malay Maniar, Ondřej Mikuláš, Jaroslav Pekar
Abstract Increasingly strict CO2 and emissions norms are pushing the automotive industry towards increasing adoption of Hybrid Electric Vehicle (HEV) technology. HEVs are complex hardware systems which are often controlled by software that is complex to maintain, time-consuming to calibrate, and not always guaranteed to deliver optimal fuel economy. Hence, coordinated, systematic control of different subsystems of HEV is an attractive proposition. In this paper, Model Predictive Control (MPC) and Equivalent Consumption Minimization Strategy (ECMS) based supervisory controllers have been developed to coordinate the power split between the two prime movers of an HEV – internal combustion engine and electric motor. A dynamical physics based HEV model has been developed for simulation of the system behavior. A cost function has been formulated to improve fuel economy and battery life.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi Fu, T. Bin Juang
Abstract The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many automakers to accelerate hybrid and electric vehicle development. Generally hybrid and electric vehicles create less noise due to their compact engines (or no engine). However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from the transmission in a hybrid vehicle. The analysis includes two stages. Firstly, a detailed finite element (FE) model of the transmission is constructed, and case surface velocities are calculated utilizing motor electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-1515
Neil Lewington, Lauri Ohra-aho, Olav Lange, Klaus Rudnik
Abstract Industry trends towards lighter, more aerodynamically efficient road vehicles have the potential to degrade a vehicle’s response to crosswinds. In this paper, a methodology is outlined that indirectly couples a computational fluid dynamics (CFD) simulation of the vehicle’s aerodynamic characteristics with a multi-body dynamics simulation (MBD) to determine yaw, roll and pitch response characteristics during a severe crosswind event. This one-way coupling approach mimics physical test conditions outlined in open loop test procedure ISO 12021:2010 that forms part of the vehicle sign-off criterion at Ford Motor Company. The methodology uses an overset mesh CFD method to drive the vehicle through a prescribed crosswind event, providing unfiltered predictions of vehicle force and moment responses that are used as applied forces in the MBD model. The method does not account for changes in vehicle attitude due to applied aerodynamic forces and moments.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-1355
Paul H. DeMarois, Bill Pappas, William G. Ballard, Jeffrey R. Williams, Gregory West
Abstract Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
2017-03-28
Technical Paper
2017-01-1533
Kathleen DeMarco, James Stratton, Kevin Chinavare, Garry VanHouten
Abstract The introduction of Worldwide harmonized Light vehicles Test Procedures (WLTP) in Europe and increased Corporate Average Fuel Economy (CAFE) standards in the United States for fuel economy and emissions reductions are going to have a larger role in vehicle development. Two major ways to increase fuel economy and reduce emissions are by reducing mass and improving aerodynamics. In the wheel segment, these two possible means to improve fuel economy compete against each other. Most lightweight wheel designs are detrimental to aerodynamics and aerodynamic wheels are seen as unstylish and with a high mass penalty. One solution is through the use of composite wheel technology which replaces non-structural aluminum with lighter weight materials. This study used SAE J2263 and SAE J2264 procedures to establish baseline fuel economy numbers and to evaluate various mass, inertial and aerodynamic differences between wheel concepts.
2017-03-28
Technical Paper
2017-01-1538
Jiaye Gan, Longxian Li, Gecheng Zha, Craig Czlapinski
Abstract This paper conducts numerical simulation and wind tunnel testing to demonstrate the passive flow control jet boat tail (JBT) drag reduction technique for a heavy duty truck rear view mirror. The JBT passive flow control technique is to introduce a flow jet by opening an inlet in the front of a bluff body, accelerate the jet via a converging duct and eject the jet at an angle toward the center of the base surface. The high speed jet flow entrains the free stream flow to energize the base flow, increase the base pressure, reduces the wake size, and thus reduce the drag. A baseline heavy duty truck rear view mirror is used as reference. The mirror is then redesigned to include the JBT feature without violating any of the variable mirror position geometric constraints and internal control system volume requirement. The wind tunnel testing was conducted at various flow speed and yaw angles.
2017-03-28
Technical Paper
2017-01-1540
Yuri M. Lopes, Maxwell R. Taylor, Todd H. Lounsberry, Gregory J. Fadler
Abstract Typical production vehicle development includes road testing of a vehicle towing a trailer to evaluate powertrain thermal performance. In order to correlate tests with simulations, the aerodynamic effects of pulling a trailer behind a vehicle must be estimated. During real world operation a vehicle often encounters cross winds. Therefore, the effects of cross winds on the drag of a vehicle–trailer combination should be taken into account. Improving the accuracy of aerodynamic load prediction for a vehicle-trailer combination should in turn lead to improved simulations and better thermal performance. In order to best simulate conditions for real world trailer towing, a study was performed using reduced scale models of a Sport Utility Vehicle (SUV) and a Pickup Truck (PT) towing a medium size cargo trailer. The scale model vehicle and trailer combinations were tested in a full scale wind tunnel.
2017-03-28
Technical Paper
2017-01-1529
Nicholas Simmonds, John Pitman, Panagiotis Tsoutsanis, Karl Jenkins, Adrian Gaylard, Wilko Jansen
Abstract Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
2017-03-28
Technical Paper
2017-01-1531
Keiichi Taniguchi, Akiyoshi Shibata, Mikako Murakami, Munehiko Oshima
Abstract This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
2017-03-28
Technical Paper
2017-01-1177
Youngho Jun, Byung Chun Jeon, WoongRo Youn
Abstract It will be a challenge to satisfy CO2 regulations in 2020 with conventional powertrains based on a gasoline or diesel engine. In order to reduce CO2-emission until upcoming 2020, it has been suggested that new powertrain systems should be developed. One of them is mild hybrid electric vehicle (MHEV) system with a belt driven motor (BDM). MHEV system with a BDM has an advantage of costs in contrast to full hybrid systems, because fuel efficiency of the powertrain is able to be increased by simply substituting the belt driven motor for an alternator. In this following paper, the simulator is developed for testing MHEV system which is consist of a belt driven motor(BDM). This simulator is used for evaluating fuel efficiency of mild hybrid system that has equivalent consumption minimization strategy (ECMS) algorithm for BDM type. The ECMS is an efficient strategy to manage electric and fuel energy between the battery and the internal combustion engine.
2017-03-28
Technical Paper
2017-01-1254
Raja Sangili Vadamalu, Christian Beidl
Powertrain systems exploiting information from vehicle connectivity have widened the system boundary resulting in additional degrees-of-freedom for predictive trajectory planning. Heuristic methods based on component characteristics are currently widely used for Energy Management (EM) functionality of hybridized powertrains. Despite their better usability, increased calibration effort and sensitivity to synthetic calibration scenarios are drawbacks of such control methods. Availability of predictive data, better computing power and challenges posed by various scenarios in real driving, have led to interest in online-optimizing EM functionality. Equivalent Consumption Minimization Strategy (ECMS) approaches based on Indirect optimal control /Pontryagin Minimum principle have difficulty in handling inequality state constraints. Extensions of ECMS make use of modifications to the equivalence factor/co-state, based on prediction of driving conditions.
2017-03-28
Technical Paper
2017-01-1683
Adit Joshi
Software for autonomous vehicles is highly complex and requires vast amount of vehicle testing to achieve a certain level of confidence in safety, quality and reliability. According to the RAND Corporation, a 100 vehicle fleet running 24 hours a day 365 days a year at a speed of 40 km/hr, would require 17 billion driven kilometers of testing and take 518 years to fully validate the software with 95% confidence such that its failure rate would be 20% better than the current human driver fatality rate [1]. In order to reduce cost and time to accelerate autonomous software development, Hardware-in-the-Loop (HIL) simulation is used to supplement vehicle testing. For autonomous vehicles, path following controls are an integral part for achieving lateral control. Combining the aforementioned concepts, this paper focuses on a real-time implementation of a path-following lateral controller, developed by Freund and Mayr [2].
2017-03-28
Technical Paper
2017-01-1592
Jingdong Cai, Saurabh Kapoor, Tushita Sikder, Yuping He
Abstract In this research, active aerodynamic wings are investigated using numerical simulation in order to improve vehicle handling performance under emergency scenarios, such as tight cornering maneuvers at high speeds. Air foils are selected and analyzed to determine the basic geometric features of aerodynamic wings. Built upon the airfoil analysis, the 3-D aerodynamic wing model is developed. Then, the virtual aerodynamic wings are assembled with the 3-D vehicle model. The resulting 3-D geometry model is used for aerodynamic analysis based on numerical simulation using a computational fluid dynamics (CFD) software package. The CFD-based simulation data and the vehicle dynamic model generated are combined to study the effects of active aerodynamic wings on handling performance of high-speed vehicles. The systematic numerical simulation method and achieved results may provide design guidance for the development of active aerodynamic wings for high-speed road vehicles.
2017-03-28
Technical Paper
2017-01-1225
Jayaraman Krishnasamy, Martin Hosek
Abstract An advanced electric motor with hybrid-field topology has been developed for automotive traction applications. Departing from the conventional radial- and axial-field designs, the hybrid-field motor features three-dimensional magnetic flux paths, which are enabled by a novel isotropic soft magnetic material produced by a unique additive-manufacturing process based on spray forming. The motor is expected to offer an unprecedented combination of high power output, compact size, low weight and energy efficiency, achieving more than two times higher power density than state-of-the-art high-performance traction motors.
2017-03-28
Technical Paper
2017-01-0410
Aref M. A. Soliman
Abstract Although active suspension improved vehicle ride comfort, their two main drawbacks are the required high component costs and energy input levels for active suspension. The semi-active and twin accumulator suspensions are proposed which addresses these two drawbacks. Ride performances for passive, twin accumulator and semi-active are examined theoretically using half vehicle model. The power consumed in rolling resistance and power dissipation in suspension for passive, twin accumulator and semi-active suspension systems are evaluated. The effect of road disturbance on the vehicle ride performance for twin accumulator and semi-active suspension systems is studied. The rolling resistance power losses are also investigated. The results showed that the optimum twin accumulator suspension system over all road roughness/speed conditions would have adaptable spring stiffness and damping coefficients which could be changed depending on the road conditions.
2017-03-28
Technical Paper
2017-01-0328
Yunkai Gao, Genhai Wang, Jingpeng Han
Abstract The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
2017-03-28
Journal Article
2017-01-1146
N. Khalid Ahmed, Jimmy Kapadia
Abstract The efficiency of an electrified powertrain is sensitive to fluctuations in temperature. This impacts the Electric Vehicle Miles Traveled (eVMT), or the miles travelled by Plug-In Hybrid Electric Vehicles (PHEVs) using electrical grid power. In this paper, we discuss various methods used to calculate eVMT for PHEVs and propose an alternate method to calculate eVMT with higher accuracy using real world customer data. Real world customer data is obtained through telematics modems on Ford Energi products powered by the “MyFord Mobile” web and phone applications. Customer and season specific data from pure charge depleting and pure charge sustaining trips are used in this method to generate a customer and season specific conversion factor. As a result, this real world data based method helps track the effect of seasonality on eVMT obtained by customers in a combination of all charge depleting and charge sustaining trips.
Viewing 181 to 210 of 19864