Criteria

Text:
Display:

Results

Viewing 1 to 30 of 19862
2017-07-10
Technical Paper
2017-28-1921
Jyotirmoy Barman
Engine down speeding is rapidly picking up momentum in the many segment of world market. Numerous engines down speeding packages from OEM have been tailored to take advantage of the increased efficiencies associated with engine down speeding. Running at a lower rpm provides numerous advantages. The most obvious of these is reduced fuel consumption, since the engine can spend more time running within its optimum efficiency range. By down speeding, the engine is made to run at low speeds and with high torques. For the same power the engine is operated at higher specific load (BMEP) which results in higher efficiency and reduced fuel consumption (BSFC). The reasons for increased fuel efficiency are reduced engine friction due to low piston speeds, reduced relative heat transfer and increased thermodynamic efficiency.
2017-07-10
Technical Paper
2017-28-1949
Johnson Jose, Ramesh M, G Venkatesan, M Khader Basha
Unmanned Aerial Vehicles (UAV) are being deployed in military, law enforcement, search & rescue, scientific research, environmental & climate studies, reconnaissance and other commercial and non-commercial applications on a large scale. A design and development of landing gear system has been taken up for a UAV. This paper presents the design optimization of structural components of Wheel-Brake & Fork assembly pertaining to the Main Landing Gear (MLG) for a UAV. The wheel, fork, axle and linkages constitute the wheel assembly. The wheel assembly is assembled with the strut assembly and forms the Landing gear system. The Fork is the connecting member between the shock strut and the axle containing the wheelbrake assembly. As the fork and axle are subjected to shock loads while landing, the strength of these components are very much essential to withstand the dynamic loads.
2017-07-10
Technical Paper
2017-28-1933
Alberto Boretti
The contribution analyses the Volkswagen emission scandal and the impacts on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based mobility. The operation of the United States Environmental Protection Agency, Volkswagen and the United States prosecutor sparked by the action of the International Council on Clean Transportation is forcing the Original Equipment Manufacturers towards an everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) flavor and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
2017-06-05
Technical Paper
2017-01-1889
Todd Tousignant, Kiran Govindswamy, Georg Eisele, Christoph Steffens, Dean Tomazic
Abstract The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Electric and hybrid electric vehicles do not typically utilize IC engines for low-speed operation. Under these low-speed operating conditions, the vehicles are much quieter than conventional IC engine-powered vehicles, making their approach difficult to detect by pedestrians. To mitigate this safety concern, many manufacturers have synthesized noise (using exterior speakers) to increase detection distance. Further, the US National Highway Traffic Safety Administration (NHTSA) has provided recommendations pursuant to the Pedestrian Safety Enhancement Act (PSEA) of 2010 for such exterior noise signatures to ensure detectability.
2017-06-05
Technical Paper
2017-01-1891
Todd Freeman, Kelby Weilnau
Abstract Similar to the automotive industry, the expectations from customers for the noise and vibration performance of personal vehicles such as golf carts, ATV’s, and side-by-side vehicles has continued to evolve. Not only do customers expect these types of vehicles to be more refined and to have acoustic signatures that match the overall performance capabilities of the vehicle, but marketing efforts continue to focus on product differentiators which can include the acoustic and vibration performance. Due to this increased demand for acoustic and vibration performance, additional NVH efforts are often required to meet these expectations. This paper provides a sample of some of the efforts that have occurred to further refine and develop the noise and vibration signature for golf carts.
2017-06-05
Technical Paper
2017-01-1890
Xingyu Zhang, Bo Yang, Manchuang Zhang, Sanbao Hu
Abstract H-Bahn ("hanging railway") refers to the suspended, unmanned urban railway transportation system. Through the reasonable platform layout, H-Bahn can be easily integrated into the existing urban transit system. With the development of urban roads, the associated rail facilities can be conveniently disassembled, moved and expanded. The track beam, circuits, communication equipment, and sound insulation screen are all installed in a box-type track beam so that the system can achieve a high level of integration and intelligence. The carriage of the modern H-banh vehicle is connected with the bogies by two hanging devices. The vehicle is always running in the box-type track beam; therefore there are less possibilities of derailment. Consequently, the key work focuses on the running stability evaluation and curve negotiation performance analysis.
2017-06-05
Journal Article
2017-01-1909
Joel Bruns, Jason Dreyer
Abstract The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence to preload and dynamic amplitude; however, analysis of these devices has not addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally-varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1757
Matthew Maunder, Benjamin Munday
Abstract Excitement, image and emotion are key attributes for cars, particularly those with higher power ratings. Engine sound has traditionally acted as the car’s voice, conveying these attributes to the driver and passengers along with the brand image. Engine sound also underpins the dynamic driving experience by giving instant feedback about how a car is operating, enhancing the connection between driver and vehicle. For decades, the automotive industry has engineered engine sound to achieve these benefits, thereby defining the ‘language’ of car sound. Electric vehicles deliver strong and responsive performance but naturally lack the acoustic feedback that internal combustion engines provide. While this gives advantages in terms of comfort and environmental noise, the benefits of engine sound are lost. Carefully controlled acoustic feedback inside the car’s cabin brings tangible and valuable benefits both for the dynamic driving experience and to convey the brand image.
2017-06-05
Journal Article
2017-01-1762
Michael Roan, M. Lucas Neurauter, Douglas Moore, Dan Glaser
Abstract Hybrid and electric vehicles (HVs and EVs) have demonstrated low noise levels relative to their Internal Combustion Engine (ICE) counterparts, particularly at low speeds. As the number of HVs/EVs on the road increases, so does the need for data quantifying auditory detectability by pedestrians; in particular, those who are vision impaired. Manufacturers have started implementing additive noise solutions designed to increase vehicle detectability while in electric mode and/or when traveling below a certain speed. A detailed description of the real-time acoustic measurement system, the corresponding vehicular data, development of an immersive noise field, and experimental methods pertaining to a recent evaluation of candidate vehicles is provided herein. Listener testing was completed by 24 legally blind test subjects for four vehicle types: an EV and HV with different additive noise approaches, an EV with no additive noise, and a traditional ICE vehicle.
2017-06-05
Technical Paper
2017-01-1763
Lisa Steinbach, Ercan Altinsoy, Robert Rosenkranz
Abstract In today's urban environment inhabitants are permanently exposed to elevated noise levels, which are dominated by traffic noise. The process of electrification of vehicles might change the traffic noise in city centers. The aim of this work was to determine the pedestrian reaction, the warning effect and the annoyance of more realistic traffic situations. For this purpose both combustion and electric vehicle noise situations and mixed scenarios of both concepts were generated. The differences in the perceived annoyance and warning effect were investigated with perception studies.
2017-06-05
Technical Paper
2017-01-1764
Himanshu Amol Dande, Tongan Wang, John Maxon, Joffrey Bouriez
Abstract The demand for quieter interior cabin spaces among business jet customers has created an increased need for more accurate prediction tools. In this paper, the authors will discuss a collaborative effort between Jet Aviation and Gulfstream Aerospace Corporation to develop a Statistical Energy Analysis (SEA) model of a large commercial business jet. To have an accurate prediction, it is critical to accurately model the structural and acoustic subsystems, critical noise transmission paths, and dominant noise sources for the aircraft. The geometry in the SEA model was developed using 3D CAD models of major airframe and interior cabin components. The noise transmission path was characterized through extensive testing of various aircraft components in the Gulfstream Acoustic Test Facility. Material definitions developed from these tests became input parameters in the SEA model.
2017-06-05
Technical Paper
2017-01-1775
Mark A. Gehringer, Robert Considine, David Schankin
Abstract This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
2017-06-05
Technical Paper
2017-01-1783
Chris Todter, Olivier Robin, Paul Bremner, Christophe Marchetto, Alain Berry
Abstract Surface pressure measurements using microphone arrays are still challenging, especially in an automotive context with cruising speeds around Mach 0.1. The separated turbulent boundary layer excitation and the side mirror wake flow generate both acoustic and aerodynamic components, which have wavenumbers that differ by a factor of approximately 10. This calls for high spatial resolution measurements to fully resolve the wavenumber-frequency spectrum. In a previous publication [1], the authors reported a micro-electro-mechanical (MEMS) surface microphone array that successfully used wavenumber analysis to quantify acoustic versus turbulence loading. It was shown that the measured surface pressure at each microphone could be strongly influenced by self-noise induced by the microphone “packaging”, which can be attenuated with a suitable windscreen.
2017-06-05
Journal Article
2017-01-1786
Hiroshi Yokoyama, Ryo Adachi, Taiki Minato, Akiyoshi Iida
Abstract The objective of this paper is to clarify the mechanism for the reduction of cavity tone with blowing jets aligned in the spanwise direction in the upstream boundary layer. Also, the effects of spacing of the jets on the reduction are focused. To achieve these objectives, direct aeroacoustic simulations were conducted along with wind tunnel experiments. The depth-to-length ratio of cavity was D/L = 0.5. The incoming boundary layer was laminar, where the boundary layer thickness was δ/L = 0.055. The predicted flow fields without control show that two-dimensional large-scale vortices are shed and become acoustic sources in the cavity. The effects of spanwise spacing of spanwise-aligned jets on the cavity flow and tone were clarified with computations and experiments with the different pitches of s/L = 0.1 - 1.0 (s/δ = 1.8-18.2). As a result, the largest reduction level was obtained for s/L = 0.5.
2017-06-05
Technical Paper
2017-01-1820
Martin Sopouch, Josip Hozmec, Alessandro Cadario
Abstract This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
2017-06-05
Technical Paper
2017-01-1814
Todd Tousignant, Kiran Govindswamy, Vikram Bhatia, Shivani Polasani, W Keith Fisher
Abstract The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
2017-06-05
Journal Article
2017-01-1825
Takenori Miyamoto, Hiroshi Yokoyama, Akiyoshi Iida
Abstract Intense aeroacoustic feedback noises may radiate from flow around an airfoil, rearview mirror with small gaps and so on. Reductions of these noises are important issues in the development of industrial application. The intense noise from a bonnet of the automobile is one of the typical problems of acoustic feedback noise. In order to reduce this noise, plasma actuator (PA) was utilized to control flow and acoustic fields. The aim of this investigation is to clarify the effects of flow control by the PA on noise reduction and the noise reduction mechanism. Wind tunnel experiments were conducted with a half scale bonnet model and a low noise wind tunnel. Simultaneous measurements of flow and noise fields were conducted to understand the generation mechanism of the bonnet noise. Coherent output power (COP) of the velocity fluctuations with reference to far-field sound pressure was measured to visualize noise source distribution.
2017-06-05
Technical Paper
2017-01-1835
Nader Dolatabadi, Ramin Rahmani, Stephanos Theodossiades, Homer Rahnejat, Guy Blundell, Guillaume Bernard
Abstract Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS.
2017-06-05
Technical Paper
2017-01-1834
Dirk von Werne, Prasanna Chaduvula, Patrick Stahl, Michael Jordan, Jamison Huber, Korcan Kucukcoskun, Mircea Niculescu
Abstract Fan noise can form a significant part of the vehicle noise signature and needs hence to be optimized in view of exterior noise and operator exposure. Putting together unsteady CFD simulation with acoustic FEM modeling, tonal and broadband fan noise can be accurately predicted, accounting for the sound propagation through engine compartment and vehicle frame structure. This paper focuses on method development and validation in view of the practical vehicle design process. In a step by-step approach, the model has been validated against a dedicated test-set-up, so that good accuracy of operational fan noise prediction could be achieved. Main focus was on the acoustic transfer through the engine compartment. The equivalent acoustic transfer through radiators/heat exchangers is modeled based on separate detailed acoustic models. The updating process revealed the sensitivity of various components in the engine compartment.
2017-06-05
Technical Paper
2017-01-1837
Paul R. Donavan, Carrie Janello
Abstract Acoustic beamforming was used to localize noise sources on heavy trucks operating on highways in California and North Carolina at a total of 20 sites. Over 1,200 trucks were measured under a variety of operating conditions, including cruise on level highways, on upgrades, down degrades, low speed acceleration, and for various speeds and pavements. The contours produced by the beamforming measurements were used to identify specific source contributions under these conditions and for a variety of heavy trucks. Consistently, the highest noise levels were seen at the tire-pavement interface, with lesser additional noise radiated from the engine compartment. Noise from elevated exhaust stacks was only documented for less than 5% of the trucks measured. The results were further reduced to produce vertical profiles of noise levels versus height above the roadway. The profiles were normalized to the highest noise level at ground level.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-06-05
Technical Paper
2017-01-1832
Giovanni Rinaldi, Jason Edgington, Brian Thom
Abstract Typical approaches to regulating sound performance of vehicles and products rely upon A-weighted sound pressure level or sound power level. It is well known that these parameters do not provide a complete picture of the customer’s perception of the product and may mislead engineering efforts for product improvement. A leading manufacturer of agricultural equipment set out to implement a process to include sound quality targets in its product engineering cycle. First, meaningful vehicle level targets were set for a tractor by conducting extensive jury evaluation testing and by using objective metrics that represent the customer’s subjective preference for sound. Sensitivity studies (“what-if” games) were then conducted, using the predicted sound quality (SQ) index as validation metric, to define the impact on the SQ performance of different noise components (frequency ranges, tones, transients).
2017-06-05
Technical Paper
2017-01-1847
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar rao.P
Abstract Tractor operators prefer to drive more comfortable tractors in the recent years. The high noise and vibration levels, to which drivers of agricultural tractor are often exposed for long periods of time, have a significant part in the driver’s fatigue and may lead to substantial hearing impairment and health problems. Therefore, it is essential for an optimal cabin design to have time and cost effective analysis tools for the assessment of the noise and vibration characteristics of various design alternatives at both the early design stages and the prototype testing phase. Airborne excitation and Structure Borne excitation are two types of dynamic cabin excitations mainly cause the interior noise in a driver’s cabin. Structure-borne excitation is studied in this paper and it consists of dynamic forces, which are directly transmitted to the cabin through the cabin suspension. These transmitted forces introduce cabin vibrations, which in turn generate interior noise.
2017-06-05
Technical Paper
2017-01-1839
Edward T. Lee
Abstract It is common for automotive manufacturers and off-highway machinery manufacturers to gain insight into the system’s structural dynamics by evaluating the system inertance functions near the mount locations. The acoustic response of the operator’s ears is a function of the vibro-acoustic characteristics of the system structural dynamics interacting with the cavity, with the actual load applied at the mount locations. The overall vibro-acoustic characteristics can be influenced by a change in local stiffness. To analyze the response of a system, it is necessary to go beyond analyzing its transfer functions. The actual load needs to be understood and applied to the transfer function set. Finite element (FE) based analysis provides a good foundation for deterministic solutions. However the finite element method decreases in accuracy as frequency increases.
2017-06-05
Technical Paper
2017-01-1855
Ramakanta Routaray
Abstract The basic function of a motorcycle frame is somewhat similar to that of the skeleton in the human body, i.e. to hold together the different parts in one rigid structure. One of the major benefits (for a motorcycle enthusiast) of using an advanced frame design lies in the sporty handling characteristics of the bike. A well designed frame can add to the joy of riding a motorcycle as the bike would feel more stable, effortless, and confident around corners, in straight lines and while braking. A well approved modeling [2] techniques or adequate guide line principles have to be followed while designing the body and chassis in order to achieve the vibration within control. This paper depicts a methodological right approach (guide lines) while designing the body and chassis of a two wheeler in order to control noise and vibration of the body and chassis.
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Abstract Truck and construction seats offer a number of different challenges compared to automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to a minimum frequency of 1 Hz was employed. Slowly swept sine excitation was used to visualize the seat mode shapes and identify nonlinearities at low frequencies. A sample set of seat BSR sounds are described in terms of time and frequency characteristics, then analyzed using sound quality metrics.
2017-06-05
Technical Paper
2017-01-1866
Pradeep Jawale, Nagesh Karanth
Abstract Urbanisation has led to an increased need for mobility in public transportation. Sensing the unfolding worrisome scenario, many countries have taken up different mass rapid transit solutions to alleviate the problem and restore the free flowing traffic. BRT should have been the logical choice particularly considering the lower capital costs involved and faster implementation. Comprehensibly the expectations of this class of vehicles will be high in term of quality and comfort to the passengers. Level of vibration and noise is an important indicator to evaluate vehicle's ride comfort. The challenges are to design the high powered Powertrain and Air Conditioning system nonetheless low interior noise, vibration and harshness correspondents to personal cars. This paper is an invention of, development work done in interior noise refinement of a bus. A prototype bus manufactured to meet all the requirement of BRT - premium segment urban bus.
2017-06-05
Technical Paper
2017-01-1892
Yosuke Tanabe, Masanori Watanabe, Takafumi Hara, Katsuhiro Hoshino, Akira Inoue, Masaru Yamasaki
Abstract Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
2017-05-18
Journal Article
2017-01-9678
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Abstract Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
Viewing 1 to 30 of 19862