Criteria

Text:
Display:

Results

Viewing 1 to 30 of 336
2016-04-05
Technical Paper
2016-01-1264
Tarun Mehra, Naveen Kumar, Salman Javed, Ashish Jaiswal, Farhan javed
Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has a very high FFA content than sesame oil. Biodiesel production from neem oil requires pre-treatment neutralization procedure before alkali catalysed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed in proper fraction and this mixture is Trans esterified without pre-treatment process at molar ratio of 6:1.Fuel properties of methyl ester were closed to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
2016-04-05
Technical Paper
2016-01-1271
Shubhangi S. Nigade, S. Mutalikdesai
The fossil fuels are depleting rapidly and the prices are going up day by day. The vegetable oils converted into biodiesel have the potential of alternative fuels. There are several types of vegetable oils, edible & non-edible, which can be used for biodiesel production. Very little research has been done on utilization of Madhuca Indica oil in general and optimization of transesterification process for biodiesel production using acid, base and heterogeneous (micro & nano) catalyst. In the present study, transesterification process with use of homogeneous and heterogeneous catalyst has been optimized. Various input parameters like oil-to-methanol molar ratio (1:05, 1:10 1:15 and 1:20), catalyst type (H2SO4, mCaO, nCaO and KOH), catalyst concentration (0.5, 2.5, 5.0 and 7.5 wt %) and reaction temperature (60, 65 70 and 75°C) were studied by applying the orthogonal experimental array L16.
2016-02-01
Technical Paper
2016-28-0145
Prabhu Chelladurai, V. Edwin Geo
Abstract Vegetable oils and its esters are being considered seriously for internal combustion engines. It has many advantages such as it is renewable, nontoxic, sulphur free and biodegradable. But there are several problems associated with its use in diesel engines such as lower thermal efficiency and higher smoke levels compared to diesel. One of the methods by which these problems can be tackled is by blending of diesel (DSL) with biodiesels. In this work coconut oil biodiesel and castor oil biodiesel which are obtained from different sources are chosen, considering the wide variation in properties such as viscosity and degree of unsaturation. For coconut oil biodiesel (COBD) and castor oil biodiesel (CSBD), iodine value, which is an indication of the degree of unsaturation, was determined experimentally. The property influence on the performance of COBD and CSBD and its blends with equal volume with diesel was studied.
2016-02-01
Technical Paper
2016-28-0144
Aatmesh Jain, Vinod S Sherekar, Kamalkishore Vora
Abstract Biodiesel is an alternative fuel for diesel which is made through a chemical process which converts vegetable oils and fats of natural origin into fatty acid methyl esters (FAME). The most usual method to transform Bio-oil into biodiesel is Transesterification that can be carried out using different catalyst systems. Jatropha is second generation, non-edible oil and can be used for producing biodiesel. The Transesterification reaction consists of heating jatropha oil with proper concentration of methanol at appropriate temperature in the presence of catalyst. After reaction, the mixture is allowed to settle down for 8-10 hrs. Two separate layers, top layer of biodiesel and lower layer of glycerol will form, which can be separated. Reaction temperature, amount of methanol, catalyst and reaction time are important parameters which decide yield and quality of biodiesel.
2015-09-06
Technical Paper
2015-24-2497
Pierpaolo Napolitano, Carlo Beatrice, Chiara Guido, Nicola Del Giacomo, Leonardo Pellegrini, Pietro Scorletti
Abstract The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
2015-09-06
Journal Article
2015-24-2489
Changhwan Woo, Sanghoon Kook, Peter Rogers, Christopher Marquis, Evatt Hawkes, Samani Tupufia
This paper presents engine performance and emissions of coconut oil-derived 10% biodiesel blends in petroleum diesel demonstrating simultaneous reduction of smoke and NOx emissions and increased brake power. The experiments were performed in a single-cylinder version of a light-duty diesel engine for three different fuels including a conventional diesel fuel and two B10 fuels of chemical-catalyst-based methyl-ester biodiesel (B10mc) and biological-catalyst-based ethyl-ester biodiesel (B10eb). The engine tests were conducted at fixed speed of 2000 rpm and injection pressure of 130 MPa. In addition to the fuel variation, the injection timing and rate of exhaust gas recirculation (EGR) were also varied because they impact the combustion and thus the efficiency and emissions significantly.
2015-09-01
Technical Paper
2015-01-1928
Toshiya Nakajima, Koji Kitano, Kazuhisa Mogi
Hydrotreated Vegetable Oil (HVO) and Sugar-to-Diesel as next-generation bio diesel fuels consist of normal and iso-paraffin, and those carbon number of paraffinic hydrocarbons and distillation characteristics are narrow distribution. These characteristics would cause to deteriorate the evaporation and mixture with air and fuel. Therefore, in this study, the effects of normal paraffin (Tridecane) and iso-paraffin (HVO) on emission characteristics and cold start performance in a diesel engine were investigated by engine dynamometer tests, cold start vehicle tests, and spray analyzer tests. From the results, it was found that normal and iso-paraffin are beneficial for HC, CO, Smoke emission reduction. In addition, isomerization is effective for the diesel engine to fulfill cold start performance, since normal paraffin of narrow carbon number distribution became solidified under low temperature and high pressure condition in a common rail system.
2015-09-01
Technical Paper
2015-01-1936
Ajay Singh Verma, M. Muzaffarul Hasan, Ashish Karnwal, Vipul Vibhanshu
The aim of present work is to investigate the performance and emission characteristics of a four stroke, single cylinder variable compression ratio engine fuelled with blends of diethyl ether, linseed oil methyl ester and neat diesel. In the experiment content of diethyl ether kept constant as 5% by volume for all fuel samples whereas linseed methyl ester biodiesel content was varied as 10%, 15% and 20% by volume. The different fuel samples DLD15, DLD20 and DLD25 with neat standard diesel. Experiment tests were performed with engine speed 1500 rpm and variable compression ratio 16, 17 and 18 at different load conditions. The effect of blends and compression ratio on different performance parameters viz. brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), and exhaust gas temperature along with emissions CO, CO2, HC and NOx, were investigated. Results showed that DLD20 and DLD25 exhibited the prominent engine performance and exhaust emissions compared to diesel fuel.
2015-04-14
Technical Paper
2015-01-1668
Chetankumar Patel, Nachiketa Tiwari, Avinash Kumar Agarwal
Abstract High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
2015-04-14
Technical Paper
2015-01-0853
Senthilkumar Masimalai, Arulselvan Subramanian
Abstract The effect of methanol addition (by blending) and methanol induction (by carburetion) on performance of a vegetable oil (Madhuca Indica called as Mahua oil) based diesel engine was studied experimentally. A single cylinder, water cooled, DI, diesel engine was used. Baseline data was generated with neat diesel and neat Mahua oil as fuels. Subsequently methanol was blended with Mahua oil in different proportions such as 5, 10, 15 and 20% by mass and tested for engine's performance. Finally the engine was operated in dual fuel mode of operation with methanol induction and Mahua oil injection. Engine performance, emission and combustion characteristics of ND (neat diesel), NMO (neat Mahua oil), MOMB (Mahua oil+15% methanol blend by mass) and MOMDFE (Mahua oil dual fuel engine at 15% mass share) were compared and analyzed at 100% and 40% loads. NMO resulted in inferior performance and increased emissions at both power outputs as compared to ND.
2015-04-14
Technical Paper
2015-01-0958
Naveen Kumar, Sidharth Bansal, Harveer Singh Pali
Abstract Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
2015-04-14
Technical Paper
2015-01-0889
Jai Gopal Gupta, Avinash Kumar Agarwal
Abstract Use of biodiesel from non-edible vegetable oil as an alternative fuel to mineral diesel is attractive economically and environmentally. Diesel engines emit several harmful gaseous emissions and some of them are regulated worldwide, while countless others are not regulated. These unregulated species are associated with severe health hazards. Karanja biodiesel is a popular alternate fuel in South Asia and various governments are considering its large-scale implementation. Therefore it is important to study the possible adverse impact of this new alternate fuel. In this study, unregulated and regulated emissions were measured at varying engine speeds (1500, 2500 and 3500 rpm) for various engine loads (0%, 20%, 40%, 60%, 80% and 100% rated load) using 20% Karanja biodiesel blend (KB20) and diesel in a 4-cylinder 2.2L common rail direct injection (CRDI) sports utility vehicle (SUV) engine.
2015-04-01
Journal Article
2015-01-9072
Pinkesh R. Shah, Anuradda Ganesh
Abstract The use of locally available non-edible type SVO (Straight Vegetable Oil) in existing diesel engine without any modification becomes an attractive option in rural and remote areas in decentralized power generation for irrigation and electrification, where grid power is not available, if performance is comparable to diesel fuel. The purpose of the present work is to determine how the commercially available additive influences the injection, combustion and emission characteristics of CI (Compression Ignition) engine fuelled with SVO at elevated temperature. In the present paper attention is concentrated to elucidate how IR (Injection Rate) diagram focuses on the injection characteristics which in turn affects the combustion and emission characteristics of DI (Direct Injection) diesel engine.
2015-01-14
Technical Paper
2015-26-0049
Amar Deep, Naveen Kumar, Mukesh Kumar, Ashish Singh, Dhruv Gupta, Jitesh Singh Patel
Abstract In the past few decades, use of energy resources in industrial and transportation sector have reached to its peak resulting in depleting resources and environment squalor. Vegetable oils, which have properties comparable to diesel fuel, are considered promising alternative fuels for unmodified diesel engines. However, high viscosity of vegetable oils is a major challenge which could be reduced by blending with alcohols. The aim of the present study was to investigate the suitability of orange peel oil and n-butanol blends as an alternative fuel for CI engine. Various blends of butanol with orange peel oil were prepared on volumetric basis and named as B10OPO90 (10% n-butanol and 90% orange peel oil), B20OPO80 (20% n-butanol and 80% orange peel oil), B30OPO70 (30% n-butanol and 70% orange peel oil) and B40OPO60 (40% n-butanol and 60% orange peel oil). All blends were found homogenous and various physico-chemical properties were evaluated in accordance to relevant standards.
2015-01-14
Technical Paper
2015-26-0055
Chinmaya Mishra, Purna Mishra, Biswa Kar, Nitin Katiyar
Abstract Use of diluting agents in neat vegetable oil to reduce its density and viscosity, is arguably the best alternative route for vegetable oil usage in diesel engines. It is suitable where the complex transesterification process for biodiesel production is not feasible. In this study, Calophyllum vegetable oil was diluted with 10%, 20% and 30% by volume of Isopropyl alcohol and named as CI10, CI20 and CI30 respectively. Neat diesel was termed as D100. An exhaustive field trial on a single cylinder agricultural diesel engine indicated that full load brake thermal efficiency of D100 was 26.4% followed by CI10, CI20 and CI30 test fuels. Emissions of carbon monoxide, hydrocarbons and smoke were impressively reduced by a margin of 17-63% for the isopropyl alcohol containing test fuels as compared to the diesel baseline. However, oxides of nitrogen emissions were marginally higher for the isopropyl alcohol blends.
2014-11-11
Technical Paper
2014-32-0085
Takeshi Otaka, Kazuyo Fushimi, Eiji Kinoshita, Yasufumi Yoshimoto
Abstract In order to reduce the smoke emission of PME/1-butanol blend by increasing the 1-butanol content, PME/1-butanol blend is tested using a DI diesel engine with jerk-type fuel injection pump. With PME/1-butanol blend, there is no problem on the start-ability and stability of the engine operation up to 60 mass% of 1-butanol. On the other hand, with gas oil/1-butanol blend, there is no problem on those up to 40 mass% of 1-butanol. The PME/1-butanol blend has longer ignition delay compared with PME due to the low cetane number of 1-butanol. With increasing 1-butanol content, the smoke emissions of PME/1-butanol blend decrease although the HC and CO emissions increase due to the longer ignition delay.
2014-10-13
Technical Paper
2014-01-2651
Vipul Vibhanshu, Ashish Karnwal, Amar Deep, Naveen Kumar
The rising cost and limited availability of crude oil in international market has provided an opportunity to look for substitute of fossil fuel. Scientists all over the world are experimenting on variety of renewable fuels for meeting the future energy demands. Bio origin fuels are fast becoming potential alternative resources to replace the fossil fuels. The vegetable oils, derived from oil seed crops have got 90 to 95% energy value of diesel on volume basis, comparable cetane number and can substitute upto 20% (v/v) of diesel fuel. Mahua seed oil is common ingredient of hydrogenated fat. Two-step transesterification process was employed to synthesize biodiesel from Mahua Oil (Madhuca-indica) and analysis of Physico-chemical properties as well as the combustion, performance and emission characteristics was done by taking 10, 20 and 100 % blend with diesel. The physico-chemical properties of the blends were found to be comparable to diesel.
2014-10-13
Technical Paper
2014-01-2823
Norifumi Mizushima, Daisuke Kawano, Hajime Ishii, Yutaka Takada, Susumu Sato
Abstract Widespread use of biofuels for automobiles would greatly reduce CO2 emissions and increase resource recycling, contributing to global environmental conservation. In fact, activities for expanding the production and utilization of biofuels are already proceeding throughout the world. For diesel vehicles, generally, fatty acid methyl ester (FAME) made from vegetable oils is used as a biodiesel. In recent years, hydrotreated vegetable oil (HVO) has also become increasingly popular. In addition, biomass to liquid (BTL) fuel, which can be made from any kinds of biomass by gasification and Fischer-Tropsch process, is expected to be commercialized in the future. On the other hand, emission regulations in each country have been tightened year by year. In accordance with this, diesel engines have complied with the regulations with advanced technologies such as common-rail fuel injection system, high pressure turbocharger, EGR and aftertreatment system.
2014-10-13
Technical Paper
2014-01-2763
Somnuek Jaroonjitsathian, Peerawat Saisirirat, Komkrit Sivara, Manida Tongroon, Nuwong Chollacoop
Abstract Formerly, the Hydro-treated Vegetable Oil (HVO) blended fuels has been studied by running the New European Driving Cycle (NEDC) and found that the higher HVO blended fuel can suppress NOX, lowering the particulate matter (PM) while improving the vehicle fuel economy. The result also shown that the 20% HVO + 5%FAME blended with diesel fuel has been proven to compatible with the advance diesel engine technology via the severe engine durability tests and fuel injection system tests. Therefore, the effects of two paraffinic diesel fuels, which are Gas-to-Liquid (GTL) and Hydro-treated Vegetable Oil (HVO), on a common-rail DI diesel engine have been mainly focused in this work. The main objective of this work was to study the relationships between fuel properties and theirs combustion characteristics by analyzing cylinder pressure data and exhaust emissions intensively.
2014-10-13
Technical Paper
2014-01-2827
Kristin Götz, Anja Singer, Olaf Schröder, Christoph Pabst, Axel Munack, Jürgen Bünger, Jürgen Krahl
Abstract One political and economic aim in Europe is to increase the use of renewable energy resources. In the transport sector, up to 10 % of fossil diesel fuel should be replaced by biogenic fuels by 2020. This also means a reduction in crude oil dependency. In the area of diesel fuel, fatty acid methyl esters are introduced since over 20 years as biodiesel. However, biodiesel can lead to an increase of engine oil dilution in passenger cars with diesel particulate filters. During the regeneration of the particulate filters, there is an entry of fuel components in the engine oil. While most of the diesel fuel (DF) evaporates from the engine oil, biodiesel remains in the oil and can cause sludge formation in the engine. A promising approach to reduce this problem is the use of a new type of biogenic fuel, called hydrotreated vegetable oil (HVO). This is also produced from vegetable oil or animal fat. Like biodiesel, HVO is free of sulfur and any aromatics.
2014-09-30
Technical Paper
2014-01-2327
Ashish Kumar Singh, Abhishek Sharma, Naveen Kumar
Abstract Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
2014-09-30
Technical Paper
2014-36-0156
Júlio Cesar de Souza, Lorena D'Avila do Carmo Andrade, Daniel Bastos de Rezende
Abstract When not disposed properly, the frying oil from the household or restaurants may cause clogging of waste drainage pipes and sewage systems, water contamination and soil sealing. The production of biodiesel from frying oil and its utilization for energy generation is a potential alternative to disposal, adding value to this waste and using it as an energy source. This article presents a case study of a proposal to produce biodiesel from frying oil for fuel up vehicles used to the employees transport inside Fiat's plant in Betim, Brazil. Besides the technical and economic evaluation, a life cycle assessment (LCA) was performed to examine the environmental viability of producing the biodiesel from cooking oil and its use for fuel up the minibuses replacing conventional diesel B5 for B50.
2014-04-01
Technical Paper
2014-01-1469
Xiao Chen, Hejun Guo, Liqiang Zhang
Abstract In this paper, a novel biodiesel-like fuel, ethylene glycol monoethyl ether palm oil monoester was synthesized with ethylene glycol monoethyl ether and palm oil as reagents and KOH as catalyst. Transesterification reaction was conducted to approach the optimal preparation conditions. Its chemical structure was identified through analyses of FT-IR, 1H-NMR and GPC analyses. A double cylinders, 4-stroke, water-cooled, DI diesel engine was adopted to accomplish determination of power output and exhaust emissions. The results showed that Smoke, NOx, HC and CO emissions were significantly reduced in contrast with diesel fuel. The new biodiesel-like fuel also exhibited less ignition delay and shorter combustion duration than diesel fuel.
2014-04-01
Technical Paper
2014-01-1477
Varun Pathak, Dileep Gupta, Naveen Kumar
Abstract The world today is facing severe oil crisis and environmental pollution, thus there is a great urgency of developing and applying bio based products as a substitute to mineral oil based products. Rapid industrialization and automation in the last decade has increased the demand of mineral oil based lubricant that will get exhausted in the years to come. Also in addition to the above fact, the biodegradability of mineral-oil based lubricants is around 25% maximum. About 50% of all lubricants sold worldwide end up in the Environment. Due to extensive use of mineral oil based lubricants, several environmental issues such as surface water and groundwater contamination, Air pollution, soil contamination, agricultural product and food contamination are emerging very rapidly. This has led the researchers to look for plant oil based bio- lubricant as an alternative to mineral oil based lubricant.
2014-04-01
Technical Paper
2014-01-1379
Shailesh Martin Lopes, Pat Geng, Anke Konzack
Abstract Biodiesel is a domestic, renewable fuel for diesel engines and is made from agricultural co-products such as soybean oil, rapeseed oil, palm oil and other natural oils. Biodiesel is a cleaner burning fuel that is biodegradable and non-toxic compared to petroleum diesel. Biodiesel has become a major alternative fuel for automotive applications and is critical for lowering US dependence on foreign oil and attain energy security. Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467 specifications. Field warranty and validation tests have shown significant concerns with use of poor quality biodiesel fuels including fuel system deposits, engine oil deterioration, and efficiency loss of the after treatment system. Maintaining good quality of biodiesel is critical for success as a commercial fuel.
2014-04-01
Technical Paper
2014-01-1947
Maddali Krishna, R. Chowdary
Abstract Vegetable oils are a promising substitute for diesel fuel because their properties are similar to those of diesel. They are renewable and can be easily produced. Rudolph Diesel, the inventor of the diesel engine that bears his name, experimented with fuels ranging from powdered coal to peanut oil. Investigations were carried out to evaluate the performance of a conventional diesel engine with different operating conditions [normal temperature and pre-heated temperature] of waste fried vegetable oil in crude form and biodiesel form with varied injection timing and injector opening pressure. Raw oil, containing higher amount of Free Fatty Acids (FFA) (greater than 10 wt%) collected from local restaurants of Hyderabad was converted to biodiesel in two-stage method so as to reduce FFA to 0.52% wt%.
2014-04-01
Journal Article
2014-01-1468
Dimitrios Karonis, Despina Chilari, Constantina Manou
The scope of this work is to examine the use of hydroprossed used cooking oils as substitute for automotive diesel fuel. Hydroprocessing is an alternative method for the transformation of vegetable oils into high quality transport fuels, even if the quality of the oils is low, such as used cooking oils. In the present work, the utilization of hydroprocessed used cooking oil (HUCO) as neat fuel was proved to be very difficult, due to its very poor cold flow properties; therefore, mixtures of the HUCO with low quality middle distillates (a low cetane number gasoil and a light cycle oil) were prepared and evaluated. Throughout the process the formed blends were evaluated according to the european standard EN 590. The following points were mainly recorded: The lower density of HUCO was beneficial, permitting the use of poor quality distillates, in specific concentrations, and the high cetane number of HUCO was appreciable, improving the worse behavior of the other components.
2014-03-24
Technical Paper
2014-01-2017
Morteza Borhanipour, Preechar Karin, Manida Tongroon, Nuwong Chollacoop, Katsunori Hanamura
Abstract The increase of air pollution and global warming is a threat for human life. Besides, the price of petroleum is increasing rapidly and the resources are diminishing. This obliged scientists and engineers to look for alternative sources of energy, which are cleaner and more sustainable. Biodiesel, defined as mono-alkyls of esters from vegetable oils and animals fat, is a cleaner renewable fuel and has been considered as the best alternative for petroleum based diesel fuel hence it can be used in any compression ignition engines without any significant modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions due to their higher content of oxygen. The produce less soot and hence the feed stuck is plant it will regenerate the CO2 by the photosynthesis which ensures the renewability and reduces global warming.
2013-11-27
Technical Paper
2013-01-2813
Sundarapandian S
Diesel engines dominate the field of commercial transportation and agricultural machinery on account of its superior fuel efficiency. Cost and limited reserves of conventional fossil fuels have intensified the search for alternative fuels for use in internal combustion engines. A possible alternative engine fuel is vegetable oil because it is clean burning, renewable, non-toxic, biodegradable and environmetally friendly transportation fuel. It can be used in neat form without any modification of the engine. They can be produced from the plants grown in rural areas. Vegetable oils are produced from crops such as soybean, peanut, sunflower, cotton, jatropha, mahua, neem, coconut, linseed, mustard, karanja, rape and castor. Evaluate the performance characteristics and combustion parameters of vegetable oil esters like Jatropha, Mahua and Neem for the various injection pressure and they are compared to diesel fuel. The diesel fuel results were compared with vegetable oil ester.
2013-10-14
Technical Paper
2013-01-2664
Raghvendra Gautam, Naveen Kumar, Pritam Sharma
India possesses only 0.3% of world petroleum reserves and hence heavily dependent upon petroleum derived fuels to feed its rapidly growing economy. Diesel Engines due to their superior performance have wide application in India, however, they also pollute environment significantly. Research is underway in India and elsewhere to explore the potential of variety of alternative fuels which could substitute diesel in a holistic manner. And in this context, non-edible vegetable oils are very promising as India has a large area of degraded land where such crops could be raised without compromising food security. Large number of studies have suggested that vegetable oils are not suitable in neat form as a fuel in diesel engine and should be trans-esterified using either methanol or ethanol to form esters to bring their properties similar to diesel fuel.
Viewing 1 to 30 of 336

Filter