Criteria

Text:
Display:

Results

Viewing 1 to 30 of 1490
2015-04-14
Technical Paper
2015-01-1465
Sho Nikaido, Shota Wada, Yasuhiro Matsui, Shoko Oikawa, Toshiya Hirose
1. Background and purpose There are various contributing factors to accidents of bicycles, it is considered that cyclists often do not observe the traffic regulation that requires cyclists to stop before a stop line at an intersection. As a countermeasure to this type of accident, cycling assist systems that activate a warning system for cyclists have been researched and developed. This assist system warns the cyclist about the danger of a collision. Such an assist system needs to provide a warning with appropriate timing. It is necessary to clarify cycling characteristics in developing a countermeasure for traffic accidents at an intersection without signals. The findings of this study can be used for the future construction of an assist system that will encourage cyclists to observe traffic regulations.
2015-04-14
Technical Paper
2015-01-0201
Robert Wragge-Morley, Guido Herrmann, Phil Barber, Stuart Burgess PhD
We present a method for the estimation of vehicle mass and road gradient for a light passenger vehicle . The estimation method uses information normally available on the vehicle CAN bus without the addition of extra sensors. A nonlinear adaptive observer structure with a finite and exponential time converging regressor uses vehicle speed over ground and driving torque to estimate mass and road gradient. A novel system of filters is used to avoid deriving acceleration directly from wheel speed. In addition, a novel data fusion method makes use of the regressor structure to introduce information from other sensors in the vehicle. The dynamics of the additional sensors must be able to be parameterised using the same parameterisation as the complete vehicle system dynamics. In this case we make use of an inertial measurement unit (IMU) which is part of the vehicle safety and ADAS systems.
2015-04-14
Technical Paper
2015-01-0283
Allan Lewis, Mohammad Naserian
A method of locating a charging target device (vehicle) in a parking lot scenario by the evaluation of Received Signal Strength Indication (RSSI) of the Dedicated Short Range Communications (DSRC) signal and Global Positioning System (GPS) data is proposed in this paper. As a result of this method, a vehicle will achieve expedited charger to system pairing while in the company of multiple chargers.
2015-04-14
Technical Paper
2015-01-0298
Wontaek Lim, Junsoo Kim, Chulhoon Jang, Yongwoo Jo, Myoungho Sunwoo
Autonomous vehicle technology has developed to meet the demands of drivers for improving driving safety and convenience. In particular, the study of parking for the autonomous driving has received significant attention from automotive researchers because many drivers have trouble estimating a parking path in a complex area. This difficulty is due to the characteristic of non-holonomic constraints and the restricted free-space of parking lots. Many reports have been published on the topic of geometric methods that use circles and straight lines as well as fuzzy logic based path planners for parking. These methods generate feasible paths from a starting position to a desired parking position and consider maximum steering angle, Ackermann steering geometry, and vehicle speed. However, it is difficult to generate repeated backward-forward paths for a narrow parking lot since the paths are made in a wide parking space.
2015-04-14
Technical Paper
2015-01-0297
Jianbo Lu, Dimitar Filev, Finn Tseng
This paper studies the problem of characterizing the driving behavior during steady-state and transient car-following. An approach utilizing the online learning of an evolving Takagi-Sugeno fuzzy model that is combined with a Markov model is used to characterize the multi-model and evolving nature of the driving behavior. Such an approach is targeted for real-time implementation instead of the traditional off-line approach to driver characterization. The approach is validated by testing on a test vehicle during different driving conditions.
2015-04-14
Technical Paper
2015-01-0289
Yuan Chen, Bhavin Chamadiya, Ulrich Bueker
Progressed efforts have been made on the development of Vehicle to Vehicle communication technology. The European Telecommunications Standard Institute has allocated a dedicated frequency band of 5.855 – 5.925 GHz to vehicular communication. Numerous on road measurement campaigns have been conducted by joint consortium to evaluate the performance of V2V communication around the world. However due to the scalability limitation of on road measurement, light-weight simulation tools are more widely implemented to gain general insights into V2V communication. Hence, the needs of simulation regarding evaluation on the performance of this technology have been aroused. In order to ensure the reliability of the simulation, propagation model on V2V communication should be accurate to have realistic results. In this paper, we conducted a survey of the available propagation models in urban, suburban and highway area.
2015-04-14
Technical Paper
2015-01-0371
Rupesh Sonu Kakade, Prashant Mer
Human thermal comfort is a principal objective of the climate control systems such as the automotive air conditioning system. Applying the results of research studies on human thermal comfort to the practical problems require quantitative information of the thermal environmental parameters, such as the impinging solar radiation. Photovoltaic-cell based sensor is commonly used in automotive climate control systems for the measurement of impinging solar radiation intensity. The erroneous information from sensor can cause thermal discomfort. Such an erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to opaque body elements of vehicle is one such environmental parameter that is known to give incorrect measurement. Fundamental geometric principles can be used to determine if sensor is shaded, for a given position of the sun with respect to vehicle and for a given geometry of the vehicle passenger compartment.
2015-04-14
Technical Paper
2015-01-0299
Saurav Talukdar
Control of vehicular platoons has been a problem of interest in the controls domain for the past 40 years. This problem gained a lot of popularity when the California PATH program was operational. String stability is an important design criterion in this problem and it has been shown that lead vehicle information is essential to achieve it. This work builds upon the existing framework and presents a controller form for each follower in the string where the lead vehicle information is used explicitly to analytically demonstrate string stability. The discussion is focused on using information from immediate neighbors to achieve string stability. Recent developments in distributed control are an attractive framework for control design where each agent has access to states of the neighbors and not all agents in the network. In this work, the aim is to design sparse H2 controllers and then perform a check on string stability.
2015-04-14
Technical Paper
2015-01-0291
Radovan Miucic, Samer Rajab, Sue Bai, James Sayer, Dillon Funkhouser
Many Intelligent Transportation System (ITS) technologies have been developed to improve the safety and efficiency of cars, trucks, public transport and infrastructure. However, very few ITS have been developed specifically for motorcycle user protection. In this paper an overview of vehicle-to-motorcycle wireless communication systems research status in US, EU and Japan is provided. The system enables vehicles and motorcycles to exchange safety information such as speed, heading, location, brake status through 5.9 GHz Dedicated Short Range Communication (DSRC) protocol. The vehicles and motorcycles can then assess the potential threat level based on the incoming messages from the nearby traffic. Several high-impact motorcycle-to-vehicle collision scenarios are analyzed.
2015-04-14
Technical Paper
2015-01-0295
Dominik Moser, Harald Waschl, Roman Schmied, Hajrudin Efendic, Luigi del Re
Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort as well as fuel consumption. Due to the technical progress and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received strong interest both from research and industrial communities. The performance of such systems can be enhanced if the future development of the surrounding traffic can be predicted. This paper presents a stochastic model of the future velocity of a preceding car based on the incorporation of available information sources such as V2X and radar information. Generally, human driving behavior is a complex process and influenced by several environmental impacts. The main influences on the velocity prediction considered in this work are current and previous velocity measurements and traffic light signals.
2015-04-14
Technical Paper
2015-01-0294
Takamasa Koshizen, MAS Kamal, Hiroyuki Koike
In order to mitigate traffic congestion, in this paper, we propose an effective approach of smoothing traffic flows by introducing smart cars. It is relied on the smartphone-based technology of detecting traffic congestion, initially developed by Honda Motor Co. Ltd throughout 2011-2013. The detection technology is basically aimed to correct erratic driving behaviors such as aggressive acceleration or rapid braking, and is referred as "smooth driving". Generally, it is known that traffic congestion will likely occur when volume of traffic generates demand for a space greater than the available road capacity. Nevertheless, driving patterns relative to reaction time, sensitivity and time headway, can also be crucial for traffic stability and congestion mitigation. So far, our driving strategy combined with the congestion detection has considered achieving the driving smoothness for "single" lane in particular.
2015-04-14
Technical Paper
2015-01-0296
Roman Schmied, Harald Waschl, Luigi del Re
Adaptive cruise control (ACC) systems allow a safe and reliable driving by adapting the velocity of the vehicle to velocity setpoints and the distance from preceding vehicles. This substantially reduces the effort of the driver especially in heavy traffic conditions. However, standard ACC systems do not necessarily take in account comfort and fuel efficiency. Recently some work has been done of the latter aspect. This paper extends previous works for CI engines by incorporating a prediction model of the surrounding traffic and a simplified control law capable for real time use in experiments. The prediction model itself uses sinusoidal functions as the traffic measurements often show periodic behavior and is adapted in every sample instant with respect to the predecessor’s velocity. Furthermore, the controlled vehicle is forced to stay within a specific inter-vehicle distance corridor to avoid collisions and ensure safe driving.
2015-04-14
Technical Paper
2015-01-0281
Yang Zheng, Amardeep Sathyanarayana, John Hansen
In order to address vehicular and occupant safety, it is beneficial to understand how drivers drive as well as identify any variations in their driving performance. In-vehicle signal processing plays an increasingly important role in driving behavior and traffic modeling. A driver’s control actions directly impact the vehicle dynamic performance. Meanwhile, in-vehicle signals such as the steering wheel angle, vehicle speed and other signals from multiple sensors typically included in the CAN-Bus can be used to reflect the driver’s intention. Maneuvers, influenced by the driver’s choice and traffic/road conditions, are important in understanding variations in driving performance and to help rebuild the intended route. With access to continuous real-time in-vehicles signals, a suitable framing strategy should be adopted for maneuver recognition. One classical approach is to use fixed time frames to partition incoming data for time series analysis of maneuvers.
2015-04-14
Technical Paper
2015-01-0284
Li Gang, Zhou Zhicheng
In recent years, the study on driver characteristics is becoming hotter and hotter in intelligent vehicle field. The study on driver steering characteristics is one of them. This paper points at the classification of driver steering characteristics and identification of driver type based on the driving simulator experiments. Choose forty drivers to participate in experiments which were designed on driving simulator. The experimental data were acquired by dSPACE acquisition system. The maximum of yaw rate, the maximum of wheel steering angle, the maximum of wheel steering angle rate and vehicle longitude speed under maximum of wheel steering were received to create sample matrix. Fuzzy C-means algorithm was applied to construct clusters from the sample matrix and correlation analysis was used to figure out the criteria of classification. The forty drivers were classified according to the criteria of classification.
2015-04-14
Technical Paper
2015-01-0282
Emrah Adamey, Guchan Ozbilgin, Umit Ozguner
In this paper, collaborative vehicle-tracking problem is studied for mixed-traffic environments where vehicles with differing sensing and communication capabilities coexist. The participating vehicles are classified according to their capabilities, as: (1) fully-equipped, (2) v2v-equipped, and (3) non-equipped vehicles. Fully-equipped vehicles have both onboard sensing and v2v communication capabilities; v2v-equipped vehicles have v2v communication capabilities alone; and non-equipped vehicles do not have communication capabilities. The task is to provide accurate and reliable vehicle tracking results to each participating vehicle, which can be done most effectively through wireless collaboration of fully-equipped vehicles with v2v-equipped vehicles. One particular issue that rises is the integration of the state estimates of non-equipped vehicles into the inter-vehicular communication network. Another important issue is the packet losses and delays.
2015-03-10
Technical Paper
2015-01-0050
Shane Richardson
Mining operations which utilise Haul Trucks to move product or overburden have to also build and maintain a network of roads which the Haul Truck can operate on. As the development of the mine progress typically the road network changes and the maintenance of a mining road can influence the productivity of the mine and specifically the Haul Truck fuel consumption on the mine. The current class of Ultra class Haul Trucks can have a Gross mass from 450 tonnes to 590 tonnes with 60 litre to 90 litre engines developing 1,830W to 2,800kW. By managing the roughness of the mining road network the rolling resistance of the Haul Trucks can be controlled/managed within a defined band and hence the mine can control part of the Haul Truck fuel consumption. Conversely constantly maintaining mine roads affects the productivity of the mine. Typically the decision conduct maintenance work on a Haul Road is made subjectively, based on the feel of how rough the roads are getting.
2015-01-14
Technical Paper
2015-26-0233
Marc Pinilla, Pau Kuipers
Abstract Asphalt specifications for a Wet Handling Track (WHT) are very stringent regarding coefficient of adherence and homogeneity of this coefficient over time. Currently, asphalt mixture pavements used in wet conditions have a very limited useful life and continue degrading following different patterns depending on the asphalt mixtures used. This is due to many reasons, but mainly as a consequence of supporting big strains and the extreme conditions during its useful life. During its lifetime, the asphalt is constantly immersed in water and submitted to adverse weather conditions. Moreover, Wet Handling pavements should provide very specific and stable adherence values for vehicle testing during the asphalt aging evolution. Consequently, the study, execution and testing of the new asphalt concrete mixture for the pavements and the materials used for WHT is necessary to reach durable, homogenous in time and cost effective pavements with very low adherence parameters.
2014-04-01
Journal Article
2014-01-0463
Clive D'Souza
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
2014-03-24
Technical Paper
2014-01-2007
Arturo Davila, Adria Ferrer
Abstract In recent years, platooning emerged as a realistic configuration for semi-autonomous driving. In the SARTRE project, simulation and physical tests were performed to validate the platooning system not only in testing facilities but also in conventional highways. Five vehicles were adapted with autonomous driving systems to have platooning functionalities, enabling to perform platoon tests and assess the feasibility, safety and benefits. Although the tested system was in a prototype, it demonstrated sturdiness and good functionality, allowing performing conventional road tests. First of all the fuel consumption decreased up to 16% in some configurations and different gaps between the vehicles were tested in order to establish the most suitable for platooning in terms of safety and economy. Additionally, the platooning technology enables a new level of safety in highways. Around 85% of the accident causation is the human factor.
2014-01-15
Journal Article
2013-01-9094
Waleed Faris, Hesham Rakha, Salah A.M. Elmoselhy
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
2013-10-07
Technical Paper
2013-36-0108
Carlos Bustamante, Eduard Mateu, Jesús Hernández, Álvaro Arrúe
By using telecommunications, Intelligent Transport Systems (ITS) improve traffic safety and efficiency, facilitating an integral transport of people and goods. Even with the benefits obtained through ITS Systems nowadays, significant innovations will take place in the following years such as the ubiquitous and integral use of computer vision, or the development and future implementation of Cooperative ITS (C-ITS) that will allow a direct communication between vehicles (Vehicle-to-Vehicle, V2V) and with the roadside elements (Vehicle-to-Infrastructure, V2I) by means of mobile and wireless communication. In this context, the INTELVIA project was implemented, with the clear objective of developing ITS technologies and Intelligent Human-Machine Interfaces (HMI) to obtain the advantages of using information and communication technologies in the field of road transport and traffic management.
2013-09-24
Technical Paper
2013-01-2387
Giorgio Malaguti, Massimo Dian, Massimiliano Ruggeri
Ethernet is by now the most adopted bus for fast digital communications in many environments, from household entertainment, to PLC robotics in industrial assembly lines. Even in avionic applications, new standards are fixing research results. In a similar way in automotive industry, the interest in this technology is increasingly growing, pushed forward by much research and basically by the need of high throughput, that high dynamics distributed control requests. In the world of heavy-duty machines various needs suggest to investigate for a possible Ethernet Network implementation for both real time control and services. On the other hand Bosch proposes the FlexCAN, CAN Flexible rate, but it seems a short term solution for today's congested networks.
2013-09-17
Journal Article
2013-01-2303
Antonio Dumas, Mauro Madonia, Michele Trancossi, Dean Vucinic
The European project MAAT (Multi-body Advanced Airship for Transport) is producing the design of a transportation system for transport of people and goods, based on the cruiser feeder concept. This project defined novel airship concepts capable of handling safer than in the past hydrogen as a buoyant gas. In particular, it has explored novel variable shape airship concepts, which presents also intrinsic energetic advantages. It has recently conduced to the definition of an innovative design method based on the constructal principle, which applies to large transport vehicles and allows performing an effective energetic optimization and an effective optimization for the specific mission.
2013-09-08
Technical Paper
2013-24-0081
Federico Millo, Rocco Fuso, Luciano Rolando, Jianning Zhao, Andrea Benedetto, Filippo Cappadona, Paolo Seglie
Nowadays the increasing demand for sustainable mobility has fostered the introduction of innovative propulsion systems also in the public transport sector in order to achieve a significant reduction of pollutant emissions in highly congested urban areas. Within this context this paper describes the development of the HYBUS, an environmental friendly hybrid bus for on-road urban transportation, which was jointly carried out by Pininfarina and Politecnico di Torino in the framework of the AMPERE project. The first prototype of the bus was built by integrating an innovative hybrid propulsion system featuring a plug-in series architecture into the chassis of an old IVECO 490 TURBOCITY. The bus is 12 meters long and has a capacity of up to 116 passengers in the original layout. The project relied on a modular approach where the powertrain could be easily customized for size and power depending on the specific application.
2013-04-08
Technical Paper
2013-01-0621
Hidetoshi Imaizumi, Koji Sengoku
This paper clarifies influence rate of traffic-flow and eco-driving factors that have effect on on-road fuel economy and a case study was conducted to estimate the CO₂ reduction potential due to traffic-flow smoothing and eco-driving promotion by analyzing floating car data from throughout Japan. The data employed in the study was obtained from hybrid vehicles equipped with an Eco Assist system. Previous research has reported that repeated use of these vehicles enhances fuel economy by approximately 10%. First, multiple regression analysis was performed on the subject floating car data to obtain a polynomial with fuel economy as the explained variable and items related to traffic flow and eco-driving as the explanatory variables. Average travel speed was found to have the greatest effect on fuel economy.
2013-04-08
Technical Paper
2013-01-0989
Mohamad Abdul-Hak, Youssef Bazzi, Oliver Cordes, Nizar Alholou, Malok alamir
Vehicles equipped with wireless communication technology, “Dedicated Short Range Communication” are a promising field for fuel optimization navigation applications. This paper presents a vehicle routing methodology modeled as a Petri Net (PN) for optimizing travel time and vehicle emission in a connected roadway network with minimal total traffic capacity to route vehicle in a dynamically changing traffic environment, and in an optimal and predictive manner. The novel unfolded PN model presented in this paper incorporates the essential features in Dynamic Programming (DP) to solve the stochastic traffic routing problem. The effectiveness of the proposed eco-friendly navigation methodology is validated by comparing the performance with conventional travel time based navigation methods.
2013-04-08
Technical Paper
2013-01-0987
Tang Xinpeng
Two vehicles non-cooperation differential game model of the vehicle automatic tracking was established and the corresponding optimization control algorithm was proposed using the differential game's theory. Based on this method, the simulation was carried out with high speed ISO Lane Change, Sine Steer and low speed circular motion. The preliminary study result indicated that applied differential game's theory in the vehicles automatic tracking's research was completely feasible; the computation accuracy was also satisfying.
2013-04-08
Technical Paper
2013-01-0728
Hadj Hamma Tadjine, Benedikt Schonlau, Robert Schwaiger, Klaus Krumbiegel
In order to meet the growing requirements on vehicle safety, additional safety systems are usually integrated that then fulfill a certain function. The function only becomes active in the defined use cases, since it could have a negative effect on the vehicle safety in other situations, or the necessity of intervention is not at all recognized. For the implementation of a traffic system without traffic fatalities, it is very difficult to implement this method, since an infinitely large number of situations have to be taken into consideration. In an integral safety concept, the individual safety systems are closely networked and act interdependently with each other. This paper will examine in simple scenarios whether it is possible to ensure accident-free driving such that the so-called Vision Zero can be realized in any case.
2013-04-08
Journal Article
2013-01-0617
Jan-Mou Li, Zhiming Gao
It is rare for an attempt towards optimization at the fleet-level when consideration is given to the sheer number of seemingly unpredictable interactions among vehicles and infrastructure in congested urban areas. To close the gap, we introduce a simulation based framework to explore the impact of speed synchronization on fuel economy improvement for fleets in traffic. The framework consists of traffic and vehicle modules. The traffic module is used to simulate driver behavior in urban traffic; and the vehicle module is employed to estimate fuel economy. Driving schedule is the linkage between these two modules. To explore the impact, a connected vehicle technology sharing vehicle speed information is used for better fuel economy of a fleet including six vehicles. In all scenarios analyzed, the leading vehicle operates under the EPA Urban Dynamometer Driving Schedule (UDDS), while the other five vehicles follow the leader consecutively.
2013-03-25
Technical Paper
2013-01-0022
Hironori Suzuki, Tsuyoshi Katayama
In this study, a scheme for controlling the deceleration rate required to alleviate shockwave propagation in a vehicle platoon is proposed. Assuming a three-vehicle platoon, the deceleration rates of the 2nd and the 3rd vehicles were modeled so as to minimize the speed of the shockwave that propagates through the platoon. The effect of the decelerating two vehicles on a 4th following vehicle was also evaluated. Numerical analysis showed that an earlier and slightly more rapid deceleration rate significantly decreased the speed of the shockwave propagated by the first three vehicles. Furthermore, even though the shockwave was amplified through the 2nd to 4th vehicles, this negative effect could be eliminated by applying the same control strategy to the 3rd and 4th vehicles.
Viewing 1 to 30 of 1490