Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2949
2017-10-08
Technical Paper
2017-01-2205
Velmurugan M A, MahendraMohan Rajagopal
Agricultural tractors are often subjected to various applications like front end loading work, cultivation work, where frequent forward and reverse gears are needed. Most of Indian agricultural tractors are equipped with mechanical transmission system which demands repeated clutching and de-clutching operation for such applications resulting in increased operator fatigue and lesser productivity. Also need of electronics in Indian agricultural industry for better farm mechanization is growing high. This research work depicts development of electronic bi-directional shifting (power shuttle) control design and calibration for farm vehicle fitted with wet clutch transmission.This research also reduces operator fatigue via frequent directional shift through electronic transmission. The control system is designed without any electronic interfacing with engine and also provides clutch-less gear shifting and auto-launch which offers ease to drive even for novice driver.
2017-09-04
Technical Paper
2017-24-0172
Haijun Chen, Lin Li, Mark Schudeleit, Andreas Lange, Ferit Küçükay, Christian Stamme, Peter Eilts
In view of the rapidly increasing complexity of conventional as well as hybrid powertrains, a systematic composition platform seeking for the global optimum powertrain is presented in this paper. The platform can be mainly divided into three parts: the synthesis of the transmission, the synthesis of the engine and the optimization and evaluation of the entire powertrain. In regard to the synthesis of transmission concepts, a systematical and computer-aided tool suitable both for conventional und hybrid transmission is developed. With this tool, all the potential transmission concepts, which can realize the desired driving modes or ratios, can be synthesized based on the vehicle data and requirements. As a result of the transmission synthesis, the detailed information of each transmission concept, including the transmission structure, the shifting logic, the estimated efficiency in each gear, and the estimated space arrangement of the transmission can be given out.
2017-07-10
Technical Paper
2017-28-1939
Maruti Patil, Penchaliah Ramkumar, Shankar Krishnapillai
Abstract Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
2017-07-10
Technical Paper
2017-28-1961
Shishir Sirohi, Saurabh Yadav, B. Ashok, V Ramesh Babu, C Kavitha, K Nantha Gopal
Abstract The main objective of the study is to design and analyze casing and supports of a transmission system for an electric vehicle. The system comprises of motors as the power source, constant mesh gear box coupled with limited slip differential as the power transmitting source. The space occupied by the transmission system is a foremost constraint in designing the system. The wear and tear in the system is caused by the gear meshing process and transmission error which lead to failure of the transmission system. This internal excitation also produces a dynamic mesh force, which is transmitted to the casing and mounts through shafts and bearings. In order to overcome such issues in a transmission system, a gear box casing, differential mounts and motor mounts have been designed by the use of CAD-modeling software “SOLIDWORKS”. The designs were imported to FEA software “ANSYS” for carrying out static structural analysis.
2017-06-28
Journal Article
2017-01-9180
Johannes Wurm, Eetu Hurtig, Esa Väisänen, Joonas Mähönen, Christoph Hochenauer
Abstract The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
2017-06-05
Technical Paper
2017-01-1769
Onkar Gangvekar, Santosh Deshmane
Abstract In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-06-05
Technical Paper
2017-01-1779
Xianwu Yang, Jian Pang, Lanjun Wang, Xiong Tian, Yu Tang
Abstract With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1867
Mustafa Tosun, Mehdi Yildiz, Aytekin Ozkan
Abstract Structure borne noises can be transmitted to interior cabin via physical connections by gearbox as well as other active components. Experimental Transfer Path Analysis (TPA) Methods are utilized to investigate main paths of vibrations which are eventually perceived as noise components inside the cabin. For identifying the structure and air borne noise transfer paths in a system, Matrix Inversion (MI), Mount Stiffness (MS), Operational Transfer Path Analysis (OTPA) and Operational Path Analysis with Exogenous Inputs (OPAX) Methods exist. In this study, contribution ranking of transmission paths from active system components through the physical connections into the interior cabin are investigated by MI and OPAX Methods and finally a comparison of them is presented based on the accuracy of obtained results. The modifications are applied on dominant transfer paths which are determined by the mentioned methods above, respectively.
2017-06-05
Technical Paper
2017-01-1845
Jon Furlich, Jason Blough, Darrell Robinette
Abstract When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
Abstract The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
2017-06-05
Technical Paper
2017-01-1818
Ramya Teja, T. R. Milind, Rodney C. Glover, Sunil Sonawane
Abstract Helical gears are commonly used instead of spur gears due to their potential higher load carrying capacity, efficiency and lower noise. Transmission Error (TE) is defined as deviation from perfect motion transfer by a gear pair. TE is dominant source of gear whine noise and hence gears pairs are generally analyzed and designed for low TE. In the process of designing helical gears for lower TE, the shuttling moment can become a significant excitation source. Shuttling moment is caused due to shifting of the centroid of tooth normal force back and forth across the lead. The amount of shuttling force or moment is produced by combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from gear box or transmission at its gear mesh frequency and harmonics.
2017-05-10
Technical Paper
2017-01-1930
Chris Thorne
This paper describes the development of a flexible, scalable, cost effective and efficient Continuously Variable Transmission (“CVT”) that provides significant fuel efficiency benefits in both off and on-highway applications and configurations. The goal of the project was to design, develop and demonstrate such a transmission in both the test cell and on the vehicle. Currently, the innovative transmission is undergoing vehicle testing having successfully completed all previous phases. Through this work the Energy Technologies Institute (“ETI”) is attempting to provide technical confidence in the demonstrated CVT technology to the industry such that it can be adopted by a Tier 1 or OEM. Furthermore, the work shows that both the research and development costs and subsequently the production material costs can be significantly reduced by creating a transmission technology that can broadly apply to both the on and off-highway markets.
2017-03-28
Technical Paper
2017-01-0157
Forrest Jehlik, Simeon Iliev, Eric Wood, Jeff Gonder
Abstract This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
2017-03-28
Technical Paper
2017-01-1596
Amar Penta, Rohit Gaidhani, Sampath Kumar Sathiaseelan, Prasad Warule
Abstract Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
2017-03-28
Technical Paper
2017-01-1637
David Cheng
Abstract This is a new design for sensor extreme long travel range detection technology especially for clutch master cylinder piston position detection and fork position detection in transmission application to replace PLCD (Permanent magnetic Linear Contactless Displacement) platform with simple manufacturing process and high accuracy. The main innovation point includes integrating a ferromagnetic concentrator into sensor module to enhance magnetic flux density at remote area of travel range and applying 3D Hall array with microcontroller for signal post process to guarantee the accuracy of sensor. SPI mode is used for communication between 3D Hall array and microcontroller while a new signal post process method with self-learning calibration is applied in microcontroller algorithm.
2017-03-28
Technical Paper
2017-01-1630
Yiu Heng Cheung, Zhijia Yang, Richard Stobart
Abstract Since the first stop-start system introduced in 1983, more and more vehicles have been equipped with this kind of automatic engine control system. Recently, it was found that there is strong correlation between engine resting position and the subsequent engine start time. The utilization of the synchronization time working from a required engine stop position prior the engine start request was shown to reduce start times. Hence the position control of an engine during shutdown becomes more significant. A naturally aspirated engine was modelled using the GT-Suite modelling environment to facilitate the development of position controllers using Simulink ®. The use of respectively the throttle and a belt mounted motor generator to provide a control input was considered. Proportional-Integral-Differential (PID), sliding mode and deadbeat control strategies were each used in this study.
2017-03-28
Technical Paper
2017-01-1631
Weizhe Qian, Henry Zhang
Abstract Double Clutch Transmission system becomes more and more popular in vehicles because of the fuel saving performance, cost efficiency and comfortable feeling during gear change. To save fuel consumption and reduce CO2 emissions, pump can be driven by an electric motor for oil pressure on demand. This paper will introduce a technical solution for sensorless control of an electric pump motor used in a DCT system. Oil pressure control is fulfilled by a speed controller of the oil pump motor. Some critical control requirements for the pump motor are short and reliable start-up stage, stable and accurate speed control. This paper will elaborate on the difficulties of oil pump sensorless control, and how to solve these difficulties with minimum electronic hardware. Test results will be presented. In conclusion, the proposed sensorless control strategy can meet application requirements and meanwhile provide a cost-effective and motor parameters-independent control solution.
2017-03-28
Technical Paper
2017-01-1632
Norihiro Tsukamoto, Tomohiro Chimbe, Tomohiro Asami, Keisuke Ota, Seiji Masunaga
Abstract A new shift control system using a model-based control method for stepped automatic transmissions. Using a gear train numerical formula model, the model-based shift control system is constructed using minimum calibration parameters with feedforward and feedback controllers. It also adopts control target values for the input shaft revolution and output shaft torque, thus enabling precise control that provides the most suitable shift feeling in various driving situations and for various vehicle characteristics. Furthermore, the model-based shift control system improves robustness in terms of disturbance elements such as production tolerance, time degradation, and use environment. Toyota has adopted this model-based shift control system in its UA80/UB80 8-speed automatic transmissions for front-wheel-drive vehicles and its AGA0 10-speed automatic transmission for rear-wheel-drive vehicles. This paper describes the details of this model-based shift control system.
2017-03-28
Technical Paper
2017-01-1627
Stephan Rinderknecht, Rafael Fietzek, Stéphane Foulard
Abstract An online and real-time Condition Prediction system, so-called lifetime monitoring system, was developed at the Institute for Mechatronic Systems in Mechanical Engineering (IMS) of the TU Darmstadt, which is intended for implementation in standard control units of series production cars. Without additional hardware and only based on sensors and signals already available in a standard car, the lifetime monitoring system aims at recording the load/usage profiles of transmission components in aggregated form and at estimating continuously their remaining useful life. For this purpose, the dynamic transmission input and output torques are acquired realistically through sensor fusion. In a further step, the lifetime monitoring system is used as an input-module for the introduction of innovative procedures to more load appropriate dimensioning, cost-efficient lightweight design, failure-free operation and predictive maintenance of transmissions.
2017-03-28
Technical Paper
2017-01-1628
Atsushi Ito, Masahiro Kawano, Shohei Fujita
Abstract In gasoline direct injection (GDI) systems, various injection types are needed to reduce emissions and improve fuel consumption. This requires high-precision injection in the region in which the amount of injection is small. Achieving injection of a small amount of fuel using GDI solenoid injectors requires the use of the half-lift region. In this region, however, the variation in the injection amount tends to increase due to the variation in the lift behavior of the injectors, posing the problem of how to achieve high-precision injection. To reduce the variation, we analyzed the lift timing out of the injector current and voltage signal with the ECU in an attempt to adjust the amount of injection.
2017-03-28
Technical Paper
2017-01-1629
Jing Wang, John Michelini, Yan Wang, Michael H. Shelby
Abstract Time to torque (TTT) is a quantity used to measure the transient torque response of turbocharged engines. It is referred as the time duration from an idle-to-full step torque command to the time when 95% of maximum torque is achieved. In this work, we seek to control multiple engine actuators in a collaborative way such that the TTT is minimized. We pose the TTT minimization problem as an optimization problem by parameterizing each engine actuator’s transient trajectory as Fourier series, followed by minimizing proper cost function with the optimization of those Fourier coefficients. We first investigate the problem in CAE environment by constructing an optimization framework that integrates high-fidelity GT (Gamma Technology) POWER engine model and engine actuators’ Simulink model into ModeFrontier computation platform. We conduct simulation optimization study on two different turbocharged engines under this framework with evolutionary computation algorithms.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi Fu, T. Bin Juang
Abstract The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many automakers to accelerate hybrid and electric vehicle development. Generally hybrid and electric vehicles create less noise due to their compact engines (or no engine). However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from the transmission in a hybrid vehicle. The analysis includes two stages. Firstly, a detailed finite element (FE) model of the transmission is constructed, and case surface velocities are calculated utilizing motor electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-1060
Sergei Aliukov, Andrei Keller, Alexander Alyukov
Abstract The inertial continuously variable transmissions are mechanical transmissions that are based on the principle of inertia. These transmissions have a lot of advantages. Usually, the design of the inertial continuously variable transmissions consists of inertia pulsed mechanism with unbalanced inertial elements and two overrunning clutches. Dynamics of the transmissions is described by systems of substantial nonlinear differential equations. In general, precise methods of solution for such equations do not exist. Therefore, in practice, approximate analytical and numerical methods must be employed. The main analytical methods employ successive approximation, a small parameter, or power series expansion. Each approach has its advantages and disadvantages. Therefore, we need to compare them in order to select the best method for dynamic study of such kind of transmissions.
2017-03-28
Technical Paper
2017-01-0890
Yoichiro Nakamura, Masahisa Horikoshi, Yasunori TAKEI, Takahiro Onishi, Yasuhiro Murakami, Chip Hewette
Abstract Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
2017-03-28
Technical Paper
2017-01-1116
Tomohiro Tasaka, Nobuyuki Oshima, Shinji Fujimoto, Yuya Kishi
Abstract An automatic transmission torque converter is usually used as a power transmission element, which performs the function of the torque matching and the torque amplification of the engine power output. This is referred to as the fluid performance of the torque converter, which is determined by its blade shape. Therefore, it is necessary to predict the fluid performance of the torque converter at the design stage to determine the blade shape, to which computational fluid dynamics (CFD) analysis can be applied. At present, time-averaged turbulence models such as k-ε (called Reynolds-averaged Navier–Stokes—RANS—model) are often used in such CFD analysis for industrial purposes, and are not limited to torque converters because of its appropriate calculation time. However, major traditional RANS models are less reliable for applications to complex three-dimensional flows in the torque-converter than those to simple pipe, channel and boundary layer flows.
2017-03-28
Technical Paper
2017-01-1128
Yuvraj Y. Gorwade, Anand S. Damami
Abstract To ensure a robust, reliable and durable product, predicting the useful life of aggregates at the concept stage is a very important aspect in the any product design. This requirement is very much necessary in today’s competitive environment, wherein the customer expectations are increasing and development time for reliable product is shrinking. Clutch is one of the important aggregate in an automobile having manual transmission. It acts like a fuse in the driveline system wherein its wear and tear cannot be avoidable. The performance of Clutch is correlated with its useful life. In this paper, a unique methodology is formulated for the prediction of beta life of clutch. Actual field data of over 3 to 4 years related with warranty claims, mode of failures, usage kilometers etc. has been collected on a typical utility vehicle platform which has been operating on roads of Indian subcontinent.
2017-03-28
Technical Paper
2017-01-1134
Taechung Kim, Jaret Villarreal, Luke Rippelmeyer
Abstract Automotive automatic transmissions have multiple axis configurations in which planetary gears transmit torque to a counter gear on another axis. Although general characteristics of a planetary gear (component level) have been studied, no specific investigations are available in literature explaining interactions between planetary and torque-transmitting gears (Full Unit or Sub-System). In this paper, a system FEA model (Using TM3D) of a Ravigneaux and a counter gear pair is introduced, exploring influences of system deflection in pinion load sharing to changes in gear root stress pattern. Additionally, by a series of strain gauge tests under a controlled test jig, reliability of the FEA model is verified. Finally, benefits of system-level FEA are explained by macro/micro-geometry optimization in the early design stage.
2017-03-28
Technical Paper
2017-01-1131
Keith Gilbert, Srini Mandadapu, Christopher Cindric
Abstract The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Viewing 1 to 30 of 2949