Criteria

Text:
Content:
Display:

Results

Viewing 1 to 11 of 11
2016-03-07
Book
Richard Van Basshuysen, Fred Schaefer
More than 120 authors from science and industry have documented this essential resource for students, practitioners, and professionals. Comprehensively covering the development of the internal combustion engine (ICE), the information presented captures expert knowledge and serves as an essential resource that illustrates the latest level of knowledge about engine development. Particular attention is paid toward the most up-to-date theory and practice addressing thermodynamic principles, engine components, fuels, and emissions. Details and data cover classification and characteristics of reciprocating engines, along with fundamentals about diesel and spark ignition internal combustion engines, including insightful perspectives about the history, components, and complexities of the present-day and future IC engines.
2016-03-02
Book
Mark Ahlers
This set is comprised of two titles, Aircraft Thermal Management: Systems Architectures and Aircraft Thermal Management: Integrated Energy Systems Analysis both edited by Mark Ahlers.
2016-03-02
Book
Mark Ahlers
The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International.
2016-03-02
Book
Mark Ahlers
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft.
2015-03-30
Book
T. Yomi Obidi
With new and more stringent standards addressing emission reduction and fuel economy, the importance of a well-developed engine thermal management system becomes even greater. With about 30% of the fuel intake energy dissipated through the cooling system and another 30% through the exhaust system, it is to be expected that serious research has been dedicated to this field. Thermal Management in Automotive Applications, edited by Dr. T. Yomi Obidi, brings together a focused collection of SAE technical papers on the subject. It offers insights into how thermal management impacts the efficiency of engines in heavy vehicles, the effects of better coolant flow control, and the use of smart thermostat and next-generation cooling pumps. It also provides an in-depth analysis of the possible gains in optimum warm-up sequence and thermal management on a small gasoline engine.
2014-07-30
Book
R. Parameshwaran, S. Kalaiselvam
Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the most up-to-date information on latent, sensible, and thermo-chemical energy storage systems, and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.
2012-09-30
Book
Richard Stone
Now in its fourth edition, this book remains the indispensable guide to internal combustion engines. It serves as valuable reference for both students and professional engineers needing a practical overview of the subject. Thoroughly updated, clear, comprehensive and well-illustrated, with a wealth of worked examples and problems, its combination of theory and applied practice is sure to help you understand internal combustion engines, from thermodynamics and combustion to fluid mechanics and materials science. Co-published by SAE International and Macmillan Press. Topics include: • Thermodynamic Principles • Combustion and Fuels • Spark Ignition Engines • Induction and Exhaust Processes • Turbocharging • Experimental Facilities
2011-05-26
Book
Qianfan Xin
The diesel engine has been recognized as the most promising internal combustion engine available today due to its superior thermal efficiency and reliability. By focusing on engine performance and system integration, this book establishes the theory of diesel engine system design, including the approaches used in its modeling and analysis. Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and apply the techniques to solve practical design problems. It provides detailed coverage of the fundamental concepts and generic techniques in diesel engine system design, presenting the fundamentals of dynamic and static diesel engine system designs by introducing the engine thermodynamic cycle and vehicle powertrain performance, followed by the critical boundary conditions for engine system design in the areas of combustion, emissions, and aftertreatment.
2011-03-24
Book
Andrei Makartchouk
Revised and extended, this new edition provides the foundation for diesel engines design, based on traditional methods in thermodynamics, dynamics, structural analysis, chemistry, heat transfer, and applied analysis of system operation. It also offers additional material and examples for the calculation of combustion process, thermal efficiency, heat release, NOx emissions, and diesel turbocharging. Diesel Engine Engineering-2nd Edition demonstrates operating processes with detailed graphs and schematic diagrams, illustrates the characteristics and modes of diesel engine operation, describes the thermodynamics parameters and emissions of a working cycle, discusses how various design factors affect the system reliability, offering correct techniques to improve stability and endurance. Main areas of technical expertise include: • Diesel Engine Turbocharging • Automated Control of Diesel Engines • Thermodynamics of Diesel Engines
2007-04-23
Book
Trung Van Nguyen, Tim Zhao, K.D. Kreuer
This book intends to fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes.
2004-04-08
Book
Gursaran D. Mathur
The efficiency of thermal systems (HVAC, engine cooling, transmission, and power steering) has improved greatly over the past few years. Operating these systems typically requires a significant amount of energy, however, which could adversely affect vehicle performance. To provide customers the level of comfort that they demand in an energy-efficient manner, innovative approaches must be developed.
Viewing 1 to 11 of 11

    Filter

    • Book
      11

    Subtopics