Display:

Results

Viewing 211 to 240 of 23660
2015-04-14
Technical Paper
2015-01-0588
Julian Mauricio Echeverry, Virgilio Vasquez, Jorge Aguirre, Diego Contreras
Abstract This document presents a methodology for obtaining the vehicle performance curves and values by means of the OBD2 port for a specific vehicle. In particular the Torque - Power engine curves and acceleration performance following SAE guidelines. Additionally we obtain the wheel dynamic rolling radius to get a more realistic performance. The results obtained are compared to a chassis dynamometer test performed on the same vehicle to prove feasibility for a low cost implementation when there is no access to said testing tools.
2015-04-14
Technical Paper
2015-01-0639
Adebola Ogunoiki, Oluremi Olatunbosun
Abstract This research proposes the use of Artificial Neural Networks (ANN) to predict the road input for road load data generation for variants of a vehicle as vehicle parameters are modified. This is important to the design engineers while the vehicle variant is still in the initial stages of development, hence no prototypes are available and accurate proving ground data acquisition is not possible. ANNs are, with adequate training, capable of representing the complex relationships between inputs and outputs. This research explores the implementation of the ANN to predict road input for vehicle variants using a quarter vehicle test rig. The training and testing data for this research are collected from a validated quarter vehicle model.
2015-04-14
Technical Paper
2015-01-1673
Seunghyun Lee, Yoonwoo Lee, Sungmoon Lee, Han Ho Song, Kyoungdoug Min, Hoimyung Choi
Abstract In this study, a correlation between the maximum heat release rate and vibrations from a diesel engine block was derived, and a methodology to determine the maximum heat release rate is presented. To investigate and analyze the correlation, an engine test and an actual road vehicle test were performed using a 1.6-L diesel engine. By varying the engine speed, load and main injection timing, the vibration signals from the engine block were measured and analyzed using a continuous wavelet transform (CWT). The results show that the maximum heat release rate has a strong correlation with the magnitude of the vibrations. A specific bandwidth, the vibration signals between 0.3∼1.5 kHz, was affected by the variation in the heat release rate. The vibrations excited by combustion lasted over 50 CAD; however, the signals during the period of 35 CAD after the start of injection had a dominant effect on the maximum heat release rate.
2015-04-14
Technical Paper
2015-01-1625
Frederic Boissinot, Jerome Bellavoine, Andrew Shabashevich, Siegfried Puster
Abstract Today, OEMs are challenged with an increasing number of powertrain variants and complexity of controls software. They are facing internal pressure to provide mature and refined calibrations earlier in the development process. Until now, it was difficult to respond to these requests as the drivability's calibration tasks are mostly done in vehicles. This paper describes a new methodology designed to answer these challenges by performing automated shift quality calibration prior to the availability of vehicles. This procedure is using a powertrain dynamometer coupled with a real-time vehicle dynamics model. By using a Power Train Test Bed (PTTB), a physical vehicle is not required. As soon as the vehicle dynamics model and its parameters have been defined, it can be simulated on the PTTB and drivability calibrations can be developed. A complete powertrain is coupled with low inertia and highly dynamic dynamometers.
2015-04-14
Technical Paper
2015-01-1613
Nikhil Bolar, Thomas Buchler, Allen Li, Jeff Wallace
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The three key requirements of structural performance evaluation for vehicle development are NVH, durability and safety.
2015-04-14
Technical Paper
2015-01-1615
Yuksel Gur, Jian Pan, John Huber, Jeff Wallace
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-1 vehicle design, comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1-liter 3-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the noise, vibration and harshness (NVH) sound package design and testing. Lightweight design actions on radiating panels enclosing the vehicle cabin typically cause vehicle interior acoustic degradation due to the reduction of panel surface mass.
2015-04-14
Technical Paper
2015-01-0171
Paul Liu, Abhijit Bansal, James C. McKeever
Abstract Automated software testing for both hardware and software components is one of the ways industry is gaining efficiency in testing. A standard based approach can help in reducing the dependency on one particular tool chain, reduce re-training of engineers, reducing development time and increase collaboration between supplier and OEM's. Tula's Dynamic Skip Fire (DSF) technology achieves fuel efficiency by activating only the required cylinders required to achieve desired torque. Validation of the DSF algorithms requires reading of the crank, cam, spark, fuel injector, and intake and exhaust actuator positions on an individual cylinder firing opportunity. Decisions made on a cylinder by cylinder basis can be validated. The testing architecture at its core is based on the ASAM Hardware in the loop (HIL) API standard. Following the HIL-API standard gives the flexibility of choosing the best in class measurement hardware and test case management tools.
2015-04-14
Technical Paper
2015-01-0173
Stephen Barrett, Maximilien Bouchez
Abstract Engine ECU testing requires sophisticated sensor simulation and event capture equipment. FPGAs are the ideal devices to address these requirements. Their high performance and high flexibility are perfectly suited to the rapidly changing test needs of today's advanced ECUs. FPGAs offer significant advantages such as parallel processing, design scalability, ultra-fast pin-to-pin response time, design portability, and lifetime upgradability. All of these benefits are highly valuable when validating constantly bigger embedded software in shorter duration. This paper discusses the collaboration between Valeo and NI to define, implement, and deploy a graphical, open-source, FPGA-based engine simulation library for ECU verification.
2015-04-14
Technical Paper
2015-01-0486
Jamshid Mohammadi, Mehdi Modares
Abstract Performance data offers a powerful tool for system condition assessment and health monitoring. In most applications, a host of various types of sensors is employed and data on key parameters (describing the system performance) is compiled for further analysis and evaluation. In ensuring the adequacy of the data acquisition process, two important questions arise: (1) is the complied data robust and reasonable in representing the system parameters; and (2) is the duration of data acquisition adequate to capture a favorable percentage (say for example 90%) of the critical values of a given system parameter? The issue related to the robustness and reasonableness of data can be addressed through known values for key parameters of the system. This is the information that is not often available.
2015-04-14
Technical Paper
2015-01-0702
Bita Ghaffari, Jonathan Dekam, Kevin Haddix, Kimberly Lazarz, Sergey Titov, Roman Maev
Abstract Adhesive bonding technology has gained ever-increasing significance in automotive industry, especially with the growing use of aluminum (Al) alloy body structures. The variability in thicknesses of the metal and adhesive layers, as well as in joint geometry, of automotive components has presented challenges in nondestructive evaluation of adhesive joints. Though these challenges were recently overcome for steel-adhesive joints using an ultrasonic pulse-echo technique, the difference in acoustic impedances of steel and Al leads to a lack of robustness in utilizing the same algorithm for Al-adhesive joints. Here, we present the results from using a modified version of this technique to inspect Al-adhesive joints in both laboratory and production environments. A 15-MHz, 52-pixel, 10 mm × 10 mm matrix array of ultrasonic transducers was used to obtain ultrasonic pulse echoes from joint interfaces, analysis of which produced C-scan images of the adhesive bead.
2015-04-14
Technical Paper
2015-01-1413
Louis Tijerina, Michael Blommer, Reates Curry, Radhakrishnan Swaminathan, Dev Kochhar, Walter Talamonti
Abstract This paper investigates the effects on response time of a forward collision event in a repeated-measures design. Repeated-measures designs are often used in forward collision warning (FCW) testing despite concerns that the first exposure creates expectancy effects that may dilute or bias future outcomes. For this evaluation, 32 participants were divided into groups of 8 for an AA, BB, AB, BA design (A= No Warning; B=FCW alert). They drove in a high-fidelity simulator with a visual distraction task. After driving 15 min in a nighttime rural highway environment, a forward collision threat arose during the distraction task (Period 1). A second drive was then run and the forward collision threat was repeated again after ∼10 min (Period 2). The response times from these consecutive events were analyzed.
2015-04-14
Technical Paper
2015-01-1404
Arda Kurt, Güchan Özbilgin, Keith A. Redmill, Rini Sherony, Ümit Özgüner
Abstract In this paper, a series of design, development, and implementation details for testing and evaluation of Lane Departure Warning and Prevention systems are being discussed. The approach taken to generate a set of repeatable and relevant test scenarios and to formulate the test procedures to ensure the fidelity of the collected data includes initial statistical analysis of applicable statistics; growth and probabilistic pruning of a test matrix; simulation studies to support procedure design; and vehicle instrumentation for data collection. The success of this comprehensive approach strongly suggests that the steps illustrated in this paper can serve as guidelines towards a more general class of vehicular safety and advanced driver assistance systems evaluation.
2015-04-14
Technical Paper
2015-01-1303
Wenli Li, Xiao-Hui Shi, Dong Guo, Peng Yi
Abstract This paper discusses the development of engine and vehicle model for performing dynamic emulation experiments on vehicle transmissions. In order to reduce costs and shorten new vehicle development cycle time, vehicle simulation on the driveline test bench is an attractive alternative at the development phase to reduce the quantity of proto vehicles. This test method moves the test site from the road to the bench without the need for real chassis parts. Dynamic emulation of mechanical loads is a Hardware-in-the-loop (HIL) procedure, which can be used as a supplement of the conventional simulations in testing of the operation of algorithms without the need for the prototypes. The combustion engine is replaced by an electric drive dynamometer, which replicates the torque and speed signature of an actual engine. The road load resistance of the vehicle on a real test road is accurately simulated on Load dynamometer.
2015-04-14
Technical Paper
2015-01-1324
Guangtian Gavin Song, Chin-An Tan
Abstract Nowadays, as an irreplaceable means alongside CAD and testing, CAE is more and more widely applied with advanced material modeling and simulation methods continuously being explored, so as to get more accurate result as testing. In vehicle product development process, door slam durability evaluation is an important measurement for body closure structure. So far numerous effort has been taken to develop more mature methods to well define door slam simulation in stress and fatigue life analysis. Overall all methods ever being applied can be summarized as two categories, linear stress based method and nonlinear stress based method. The methodologies, such as inertia relief method, direct transient response solution, or local strain approach, can be included in linear stress based method with linear material properties as symbol in CAE model. In local strain approach, contact surface could be defined in the necessary area with consideration for more realistic load transfer.
2015-04-14
Technical Paper
2015-01-1431
Mark H. Warner, Jon E. Bready, Wyatt Y. Warner, Alan F. Asay
Abstract Snowmobile acceleration, braking and cornering performance data are not well developed for use in accident reconstruction. Linear acceleration and braking data published by D'Addario[1] gives results for testing on 4 snowmobiles of various make and model. This paper presents the results of on-snow tests performed in 2014 which include acceleration and cornering maneuvers that have not been published previously. Maximum and average cornering speeds and corresponding lateral accelerations are presented for turns of radius 20, 35 and 65 feet (6.1, 10.7 and 19.8 meters) on level, packed snow. Performance values for acceleration, braking, and cornering are determined in tests with and without a passenger. Results of linear acceleration and braking tests were found to be comparable to the previously published work. The data are useful in snowmobile accident reconstruction for certain types of snowmobile motion analyses.
2015-04-14
Technical Paper
2015-01-1456
Mani Ayyakannu, Latha Subbiah, Mohammed Syed
Abstract Automotive knee bolster requirements have changed substantially in recent years due to expanded safety requirements. A three-piece cellular structural knee bolster assembly has been evolved to meet this matrix of requirements while being extremely lightweight (as low as 0.7 Kg), low in cost and easily tunable to work in various car/truck programs. The energy absorber is the primary component of this assembly and allows for a range of occupant sizes and weights to be restrained (from 50 Kg/152 cm 5th percentile female to 100 Kg/188cm 95th percentile male occupants). The evolution of this knee bolster assembly design is described using crush analysis, component testing to validate the crush analysis, instrument panel assembly level analysis with occupant models and sled tests. Steel and aluminum versions of this knee bolster are compared - in terms of weight, cost, design tunability for various crash conditions, structural stiffness etc.
2015-04-14
Technical Paper
2015-01-0802
Claudio Marcio Santana, Jose Eduardo Mautone Barros, Matheus Guilherme França Carvalho, Helder Alves de Almeida, Jr.
Abstract A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
2015-04-14
Technical Paper
2015-01-0586
Shugang Jiang, Dharshan Medonza, James Kitchen
Abstract Ever increasing requirements for vehicle performance, fuel economy and emissions have been driving the development and adoption of various types of hybrid powertrains. There are many different configurations of hybrid powertrains, which may include such components as engine, generator and inverter, battery pack, ultracapacitor, traction motor and inverter, transmission, and various control units. A hardware-in-the loop (HiL) testing solution that is flexible enough to accommodate different types of hybrid powertrain configurations and run a range of test scenarios is needed to support on-going development activities in this field. This paper describes the design and implementation of such a HiL testing system. The system is centered on a high performance, real-time controller that runs powertrain, driveline, vehicle, and driver models.
2015-04-14
Technical Paper
2015-01-1018
Ryoko Sanui, Katsunori Hanamura
Surface pores that are open to the inlet channel below the surface play a particularly important role in the filtration of particulate matter (i.e., soot) inside the walls of a diesel particulate filter (DPF); they are closely related to the pressure drop and filtration efficiency through the DPF as well as the performance of the regeneration process. In this study, a scanning electron microscope (SEM) was used to dynamically visualize the soot deposition process at the particle scale as “time-lapse” images corresponding to the different increases in the pressure drop at each time step. The soot was first trapped at the deepest areas of the surface pores because the porous channels in this area were constricted by silicon carbide grains; soot dendrite structures were observed to grow and finally cause obstructions here.
2015-04-14
Technical Paper
2015-01-1065
Piotr Bielaczyc, Joseph Woodburn, Andrzej Szczotka
Abstract Due to concern over emissions of greenhouse gases (GHG; particularly carbon dioxide - CO2), energy consumption and sustainability, many jurisdictions now regulate fuel consumption, fuel economy or exhaust emissions of CO2. Testing is carried out under laboratory conditions according to local or regional procedures. However, a harmonized global test procedure with its own test cycle has been created: the World Harmonized Light Vehicles Test Cycle - WLTC. In this paper, the WLTC is compared to the New European Driving Cycle (NEDC) and the FTP-75 cycle used in the USA. A series of emissions tests were conducted at BOSMAL on a chassis dynamometer in a Euro 6-complaint test facility to determine the impact of the test cycle on CO2 emissions and fuel consumption. While there are multiple differences in the test cycles in terms of dynamicity, duration, distance covered, mean/maximum speed, etc, differences in results obtained over the three test cycles were reasonably limited.
2015-04-14
Technical Paper
2015-01-0593
Guobiao Yang, Changqing Du, Dajun Zhou, Xiaona Li, Yongjun Zhou, Biyu Ye, Xinfeng Shi, Yaqian Zheng, Junrui Li, Lianxiang Yang
Abstract Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
2015-04-14
Technical Paper
2015-01-1266
Mark Stuhldreher, Charles Schenk, Jessica Brakora, David Hawkins, Andrew Moskalik, Paul DeKraker
Abstract Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012-2025 are requiring vehicle powertrains to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace naturally aspirated engines with smaller displacement “downsized” boosted engines. In order to understand and measure the effects of this technology, the Environmental Protection Agency (EPA) benchmarked a 2013 Ford Escape with an EcoBoost® 1.6L engine. This paper describes a “tethered” engine dyno benchmarking method used to develop a fuel efficiency map for the 1.6L EcoBoost® engine. The engine was mounted in a dyno test cell and tethered with a lengthened engine wire harness to a complete 2013 Ford Escape vehicle outside the test cell. This method allowed engine mapping with the stock ECU and calibrations.
2015-04-14
Technical Paper
2015-01-1514
Deepak Tiwari, Japveer Arora, Rakesh Khanger
Abstract A typical wheel development process involves designing a wheel based on a defined set of criteria and parameters followed by verification on CAE. The virtual testing is followed by bench level and vehicle level testing post which the design is finalized for the wheel. This paper aims to establish the learning which was accomplished for one such development process. The entire wheel development process had to be analyzed from scratch to arrive at a countermeasure for the problem. This paper will not only establish the detailed analysis employed to determine the countermeasure but also highlight its significance for the future development proposals. The paper first establishes the failure which is followed by the detailed analysis to determine the type of failure, impact levels and the basic underlying conditions. This leads to a systematic approach of verification which encompasses the manufacturing process as well as the test methodology.
2015-04-14
Technical Paper
2015-01-1513
Anudeep K. Bhoopalam, Kevin Kefauver
Abstract Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
2015-04-14
Technical Paper
2015-01-0591
Karan R. Khanse, Eric Pierce, Michael Ng, Saied Taheri
Abstract Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
2015-04-14
Technical Paper
2015-01-1445
Wesley Vandiver, Robert Anderson, Isaac Ikram, Bryan Randles, Christopher Furbish
Abstract The 2012 Kia Soul was manufactured with an Airbag Control Module (ACM) with an Event Data Recorder (EDR) function to record crash related data. However, 2013 is the first model year supported by the download tool and software manufactured for Kia vehicles and distributed by GIT America, Inc. Even with the same make and model, using the Kia EDR tool to image data from an unsupported model year calls into question whether some or any of the data has been properly translated. By way of example, a method for evaluating the usability of the crash related data obtained via coverage spoofing a 2012 Kia Soul is presented. Eight vehicle-to-barrier crash tests were conducted in a 2012 Kia Soul. The Kia EDR tool was utilized to retrieve crash data from the vehicle's EDR following each test by choosing the software translation settings for a 2013 Kia Soul. The recorded and translated crash data for those tests were analyzed and compared to on-board instrumentation.
2015-04-14
Journal Article
2015-01-1166
Elena Paffumi, Michele De Gennaro, Giorgio Martini, Urbano Manfredi, Stefano Vianelli, Fernando Ortenzi, Antonino Genovese
Abstract The experimental measurement of the energy consumption and efficiency of Battery Electric Vehicles (BEVs) are key topics to determine their usability and performance in real-world conditions. This paper aims to present the results of a test campaign carried out on a BEV, representative of the most common technology available today on the market. The vehicle is a 5-seat car, equipped with an 80 kW synchronous electric motor powered by a 24 kWh Li-Ion battery. The description and discussion of the experimental results is split into 2 parts: Part 1 focuses on laboratory tests, whereas Part 2 focuses on the on-road tests. As far as on-road tests are concerned, the vehicle has been tested over three different on-road routes, ranging from 60 to 90 km each, with a driving time ranging from approximately one and half to two and half hours.
2015-04-14
Journal Article
2015-01-1164
Aimee N. Duhon, Kris S. Sevel, Steven A. Tarnowsky, Peter J. Savagian
Abstract Evaluation of one year of in-use operating data from first generation Chevrolet Volt Extended-Range Electric Vehicle (E-REV) retail customers determined trip initial Internal Combustion Engine (ICE) starts were reduced by 70% relative to conventional vehicles under the same driving conditions. These Volt drivers were able to travel 74% of their total miles in EV without requiring the ICE's support. Using this first generation Volt data, performance of the second generation Volt is projected. The Southern California Association of Governments (SCAG) Regional Travel Survey (RTS) data set was also processed to make comparisons between realistic PHEV constraints and E-REV configurations. A Volt characteristic E-REV was found to provide up to 40 times more all-electric trips than a PHEV over the same data set.
2015-04-14
Journal Article
2015-01-1167
Michele De Gennaro, Elena Paffumi, Giorgio Martini, Urbano Manfredi, Stefano Vianelli, Fernando Ortenzi, Antonino Genovese
Abstract The experimental measurement of the energy consumption and efficiency of Battery Electric Vehicles (BEVs) are key topics to determine their usability and performance in real-world conditions. This paper aims to present the results of a test campaign carried out on a BEV, representative of the most common technology available today on the market. The vehicle is a 5-seat car, equipped with an 80 kW synchronous electric motor powered by a 24 kWh Li-Ion battery. The description and discussion of the experimental results is split into 2 parts: Part 1 focuses on laboratory tests, whereas Part 2 focuses on the on-road tests. As far as the laboratory tests are concerned, the vehicle has been tested over three different driving cycles (i.e. NEDC, WLTC and WMTC) at two different ambient temperatures (namely +25 °C and −7 °C), with and without the use of the cabin heating, ventilation and air-conditioning system.
2015-04-14
Journal Article
2015-01-1157
Namwook Kim, Jongryeol Jeong, Aymeric Rousseau, Henning Lohse-Busch
Abstract For electrified vehicles, understanding the impact of temperature on vehicle control and performances becomes more important than before because the vehicle might consume more energy than conventional vehicles due to lack of the engine waste heat. Argonne has tested many advanced vehicles and analyzed the vehicle level control based on the test data. As part of its ongoing effort, Toyota Prius Plug-in Hybrid was tested in thermal environmental chamber, and the vehicle level control and performances are analyzed by observing the test results. The analysis results show that the control of the Plug-in Hybrid Electric Vehicle (PHEV) is similar with Prius Hybrid Electric Vehicle (HEV) when the vehicle is under a charge sustaining mode, and the vehicle tries to consume the electric energy first under a charge depleting mode.
Viewing 211 to 240 of 23660

Filter