Display:

Results

Viewing 211 to 240 of 24219
2016-04-20
Standard
ARP6852A
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: - Similarity Analyses - Icing Wind Tunnel Tests - Flight Tests - Computational Fluid Dynamics and other Numerical Analyses This document also describes: - The history of evaluation of the aerodynamic effects of fluids - The effects of fluids on aircraft aerodynamics - The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 - Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
2016-04-15
WIP Standard
AS24462B
No scope available.
2016-04-14
Article
Manufacturing and service teams are discovering ways to use AR technology to handle complex systems like wire harnesses.
2016-04-14
WIP Standard
AIR5925B
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
2016-04-13
Article
The nCode brand of durability, test, and analysis software by HBM introduces nCode VibeSys, a new data processing system designed to help acoustics and vibration engineers.
2016-04-13
WIP Standard
ARP6385
The scope of this new document is to address the key considerations for mechanical and electrical safety in aircraft fuel pump design.
2016-04-13
WIP Standard
J1961
This test method specifies the operating procedures for using a solar fresnel reflector apparatus for the accelerated exposure of various automotive materials. Sample preparation, test durations, and performance evaluation procedures are covered in material specifications of the different automotive manufacturers.
2016-04-12
Standard
J2084_201604
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model.
2016-04-11
Article
Automakers are increasingly employing digital crash test dummies made of zeroes and ones to take the big hits in virtual vehicles.
2016-04-11
WIP Standard
ARP5483/2A
This method outlines the standard procedure for testing the hardness of bearing components. Bearings covered by this test method shall be any rolling element bearing used in airframe control.
2016-04-10
Standard
AIR4023C
This document discusses the history and development of endurance requirements, provides an analysis of test contaminant material and includes a discussion of future requirements.
2016-04-08
Magazine
Software's role continues to expand Design teams use different technologies to create new software and link systems together. Emissions regulations and engine complexity With the European Commission announcing a Stage V criteria emissions regulation for off-highway, scheduled to phase-in as earlly as 2019, there will be an end to a brief era of harmonized new-vehicle regulations. Will this affect an already complex engine development process? Evaluating thermal design of construction vehicles CFD simulation is used to evaluate two critical areas that address challenging thermal issues: electronic control units and hot air recirculation.
2016-04-07
Standard
TS251-2
This specification covers the technical requirements for SAE ITC AS series, blind, Aluminium alloy rivets that are self-plugging & have a mechanically locked, flush break stem, in both the plain & Lock Creator versions.
2016-04-07
WIP Standard
ARP6199A
This SAE Aerospace Recommended Practice (ARP) provides an approach for determining which parts on aircraft seats are non-traditional, large, non-metallic panels that need to meet the test requirements of 14CFR Part 25 Appendix F, Parts IV & V.
2016-04-06
Standard
J1228_201604
This SAE Standard specifies the test requirements in addition to those given in ISO 3046-1 for determining the power, at a single point or as a power curve, of marine propulsion engines or systems for recreational craft and other small craft using similar propulsion equipment of less than 24 m length of the hull. It also provides the means for documenting and checking the declared (rated) power published by the manufacturer.
2016-04-06
Standard
J2020_201604
This test method specifies the operating conditions for a fluorescent ultraviolet (UV) and condensation apparatus used for the accelerated exposure of various automotive exterior components.
2016-04-05
Technical Paper
2016-01-0987
Mike M. Lambert, Belachew Tesfa
Abstract Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions.
2016-04-05
Technical Paper
2016-01-0985
Christian Gruenzweig, David Mannes, Florian Schmid, Rob Rule
Abstract Neutron imaging (NI) is an alternative non-destructive inspection technique compared to the well-known X-ray method. Although neutron imaging data look at a first glance similar to X-ray images it must be underlined that the interaction mechanism of the sample material with neutrons differs fundamentally. X-ray interaction with matter occurs with the electrons in the atomic shells whereas neutrons interact only with the atomic nuclei. Hence, both methods have a different and to great extent complementary contrast origin. Neutron imaging allows for a higher penetration through heavier elements (e.g. metals) whereas a high contrast is given for light elements (e.g. hydrogen). By the use of neutrons instead of X-rays exhaust after-treatment systems can be successfully examined non-destructively for their soot, ash, urea and coating distributions.
2016-04-05
Technical Paper
2016-01-0979
Jonathan David Stewart, Rose Mary Stalker, Richard O'Shaughnessy, Roy Douglas, Andrew Woods
Abstract Catalyst aging is presently one of the most important aspects in aftertreatment development, with legislation stating that these systems must be able to meet the relevant emissions legislation up to a specified mileage on the vehicle, typically 150,000 miles. The current industry approach for controlling aging cycles is based solely on the detailed specification of lambda (air-fuel mixture concentration ratio), flow rate and temperature without any limitations on gas mixture. This is purely based upon the experience of engine-based aging and does not take into account any variation due to different engine operation. Although accurate for comparative testing on the same engine/engine type, inconsistencies can be observed across different aging methods, engine types and engine operators largely driven by the capability of the technology used.
2016-04-05
Technical Paper
2016-01-1062
Ramachandran Ragupathy, K. Pothiraj, C. Chendil, T. Kumar Prasad, Prasanna Vasudevan
Abstract Hybrid powertrains generally involve adding an electric propulsion system to an existing internal combustion engine powertrain. Due to their reduced emissions, no reliance on public infrastructure and acceptable cost of ownership, hybrids are seen as a feasible intermediate step to deliver clean and affordable transportation for the masses. Such systems are immensely complex due to the number of interplaying systems and advanced control strategies used to deliver optimum performance under widely varying loads. Resonant torsional impacts arise out of the interactions due to rotational speed variations providing impulses at specific frequencies to the spinning inertias connected by members of finite stiffness. The effects, depending on the magnitude and duration of the impacts range from unacceptably harsh vibrations to catastrophic component failure.
2016-04-05
Technical Paper
2016-01-1033
Silvia Marelli, Giulio Marmorato, Massimo Capobianco, Jean-Maxime Boulanger
Abstract Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary in order to get a better understanding of its performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement to optimize engine-turbocharger matching calculations developed in simulation models. This aspect is more noticeable as regards turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine. Actually, in the case of a turbocharger turbine, isentropic efficiency directly evaluated starting from measurement of thermodynamic parameters at the inlet and outlet sections can give significant errors.
2016-04-05
Technical Paper
2016-01-1042
Jan Macek, Oldrich Vitek
Abstract The boost pressure demands call for high efficiency turbochargers. Perfect matching to an engine and controlling in operation is a prerequisite, especially if highly diluted mixture is used. The main impact on four-stroke engine efficiency is performed via gas exchange work, Correct turbocharger representation, usually performed by maps, should be delivered by turbocharger manufacturers and applied in simulation optimizations. The robust calibration methods are required for fast-running real time simulations used for model-based control. The paper clarifies the relations between apparent and real turbocharger isentropic efficiencies at steady-flow testbed and their impact on engine cycle optimization by simulation. Simple procedures excluding the impact of heat transfer inside a turbocharger are described. The described methods are based on the use of overall turbocharger efficiency.
2016-04-05
Technical Paper
2016-01-1026
Silvia Marelli, Simone Gandolfi, Massimo Capobianco
Abstract Today turbocharging represents a key technology to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines, moreover improving performance. 1D models, generally employed to compute the engine-turbocharger matching conditions, can be optimized basing on certain information about turbine and compressor behavior. Because of difficulty in the correct evaluation of turbine isentropic efficiency with direct techniques, turbocharger turbine efficiency is generally referred to thermomechanical efficiency. To this aim, the possibility to accurately estimate power losses in turbocharger bearings can allow the assessment of the turbine isentropic efficiency starting from the thermomechanical one. In the paper, an experimental and theoretical study on turbocharger mechanical losses is presented. The proposed model, developed in the MATLAB environment, refers to radial and axial bearings.
2016-04-05
Technical Paper
2016-01-1028
Qinqing Chen, Jimin Ni, Xiuyong Shi, Qiwei Wang, Qi Chen, Si Liu
Abstract Boosting and downsizing is the trend of future gasoline engine technology. For the turbocharged engines, the actuation of intake boosting pressure is very important to the performance output. In this paper, a GT-Power simulation model is built based on a 1.5 L turbocharged gasoline engine as the research object. The accuracy of model has been verified through the bench test data. Then it is conducted with numerical simulation to analyze the effect of wastegate diameter on the engine performance, including power output and fuel economy. Mainly the wastegate diameter is optimized under full engine operating conditions. Finally an optimal MAP of wastegate diameter is drawn out through interpolation method. By the transmission relationship between wastegate and actuator, a wastegate control MAP for electric actuated wastegate can be obtained.
2016-04-05
Technical Paper
2016-01-1180
Trevor Crain, Thomas Gorgia, R. Jesse Alley
Abstract EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
Abstract At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and Multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in laboratory. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road.
2016-04-05
Technical Paper
2016-01-1365
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
2016-04-05
Technical Paper
2016-01-1300
Jacob Milhorn, Vincent Rovedatti, Richard DeJong, Gordon Ebbitt
Abstract Road tests on a pickup truck have been conducted to determine the acoustic loads on the back panel surfaces of the vehicle. Surface mounted pressure transducers arrays are used to measure both the turbulent flow pressures and the acoustic pressures. These measurements are used to determine the spatial excitation parameters used in an SEA model of the transmission loss through the back panel surfaces. Comparisons are made between tests on different road surfaces and at different speeds to identify the relative contributions of acoustic and wind noise.
2016-04-05
Technical Paper
2016-01-1313
Brian Pinkelman, Woo-Keun Song
Abstract Most methods of vibration analysis focus on measuring the level of vibration. Some methods like ISO-2631 weigh vibration level based on human sensitivity of location, direction, and frequency. Sound can be similarly measured by sound pressure level in dB. It may also be weighted to human frequency sensitivity such as dBA but sound and noise analysis has progressed to measure sound quality. The characteristic and the nature of the sound is studied; for example equal or near equal sound levels can provide different experiences to the listener. Such is the question for vibration; can vibration quality be assessed just as sound quality is assessed? Early on in our studies, vibration sensory experts found a difference in 4 seats yet no objective measurement of vibration level could reliably confirm the sensory experience. Still these particular experiences correlated to certain verbal descriptors including smoothness/roughness.
2016-04-05
Technical Paper
2016-01-1524
Feng Zhu, Binhui Jiang, Clifford C. Chou
Abstract This paper represents the development of a new design methodology based on data mining theory for decision making in vehicle crashworthy components (or parts) development. The new methodology allows exploring the big crash simulation dataset to discover the underlying complicated relationships between vehicle crash responses and design variables at multi-levels, and deriving design rules based on the whole vehicle safety requirements to make decisions towards the component and sub-component level design. The method to be developed will resolve the issue of existing design approaches for vehicle crashworthiness, i.e. limited information exploring capability from big datasets, which may hamper the decision making and lead to a nonoptimal design. A preliminary design case study is presented to demonstrate the performance of the new method. This method will have direct impacts on improving vehicle safety design and can readily be applied to other complex systems.
Viewing 211 to 240 of 24219

Filter