Display:

Results

Viewing 181 to 210 of 24120
2016-04-05
Technical Paper
2016-01-1559
Francesco Vinattieri, Tim Wright, Renzo Capitani, Claudio Annicchiarico, Giacomo Danisi
Abstract The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
2016-04-05
Journal Article
2016-01-1614
Edward Duell, Amir Kharazi, Paul Nagle, Per Elofsson, David Söderblom, Christer Michael Ramden
Abstract Scania AB has opened the new CD7 climatic wind tunnel test facility, located at the Scania Technical Center in Södertälje, Sweden. This facility is designed for product development testing of heavy trucks and buses in a range of controllable environments. Having this unique test environment at the main development center enables Scania to test its vehicles in a controlled repeatable environment year round, improving lead times from design to production, producing higher quality and more reliable vehicles, and significantly improves the capability for large vehicle performance research. This state-of-the-art facility provides environmental conditions from -35°C to 50°C with humidity control from 5 to 95 percent. The 13 m2 nozzle wind tunnel can produce wind speeds up to 100 km/h. The dynamometer is rated at 800 kW for the rear axle and 150 kW for the front axle, which also has ±10° yaw capability.
2016-04-05
Journal Article
2016-01-1611
Masaki Nakagawa, Stephan Kallweit, Frank Michaux, Teppei Hojo
Abstract This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
2016-04-05
Technical Paper
2016-01-1607
David Soderblom, Per Elofsson, Ann Hyvärinen
Abstract The effect of blockage due to the presence of the wind tunnel walls has been known since the early days of wind tunnel testing. Today there are several blockage correction methods available for correcting the measured aerodynamic drag. Due to the shape of the test object, test conditions and wind tunnel dimensions the effect on the flow may be different for two cab variants. This will result in a difference in the drag delta between so-called open-road conditions and the wind tunnel. This makes it more difficult to evaluate the performance of two different test objects when they are both tested in a wind tunnel and simulated in CFD. A numerical study where two different cab shapes were compared in both open road condition, and in a digital wind tunnel environment was performed.
2016-04-05
Technical Paper
2016-01-1588
Abdalla Abdel-Rahman, Martin Agelin-Chaab, Gary Elfstrom, John Komar
Abstract Wind tunnels with integrated aerodynamic and thermodynamic testing with yaw capabilities are not common. In this study however, an integrated aerodynamic and thermodynamic testing system with yaw capabilities is developed and applied in the climatic wind tunnel at the University of Ontario-Institute of Technology (UOIT). This was done by installing an incremental force measuring system (FMS) on the large turntable that features a chassis dynamometer. The testing system was utilized to implement an integrated aero-thermal test on a full-scale race car. An efficient testing protocol was developed to streamline the integrated testing process. The FMS was used to enhance the test car’s stability, cornering speed, and fuel efficiency by using aerodynamic devices. These objectives were achieved by installing a high rear wing to increase the rear downforce, a modified front splitter extension to produce a front downforce gain, and front canards to contribute to drag reduction.
2016-04-05
Journal Article
2016-01-0102
Michael Ludwig, Martin Rieder, Marco Wolf
Abstract Due to regulations which limit the CO2 emission of passenger vehicles in the upcoming years, hybrid cars are becoming more and more important. In this paper different concepts of hybridization are discussed with a link to the properties of the electric machine behind these hybrid concepts. Upon the basis of a generalized principle of operation of an electric machine the influence of position and speed data, acquired by a rotary position sensor, is presented with a detailed analysis of various sensor concepts. Therefore the major products used nowadays are presented with a brief introduction to the underlying measurement principle. Additionally a new semiconductor-based sensor concept is introduced with high measurement accuracy and of small form factor.
2016-04-05
Journal Article
2016-01-0050
Huafeng Yu, Chung-Wei Lin, BaekGyu Kim
Abstract Modern vehicles can have millions of lines of software, for vehicle control, infotainment, etc. The correctness and quality of the software play a key role in the safety of whole vehicles. In order to assure the safety, engineers give an effort to prove correctness of individual subsystems or their integration using testing or verification methods. One needs to eventually certify that the developed vehicle as a whole is indeed safe using the artifacts and evidences produced throughout the development cycle. Such a certification process helps to increase the safety confidence of the developed software and reduce OEM’s liability. However, software certification in automotive domain is not yet well established, compared to other safety-critical domains, such as avionics and medical devices. At the same time, safety-relevant standards and techniques, including ISO 26262 and assurance cases, have been well adopted.
2016-04-05
Technical Paper
2016-01-0891
Teri D. Kowalski, Satoshi Hirano, William A. Buscher, Eric Liu, Jerry C. Wang, James L. Linden
Abstract The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
2016-04-05
Technical Paper
2016-01-1028
Qinqing Chen, Jimin Ni, Xiuyong Shi, Qiwei Wang, Qi Chen, Si Liu
Abstract Boosting and downsizing is the trend of future gasoline engine technology. For the turbocharged engines, the actuation of intake boosting pressure is very important to the performance output. In this paper, a GT-Power simulation model is built based on a 1.5 L turbocharged gasoline engine as the research object. The accuracy of model has been verified through the bench test data. Then it is conducted with numerical simulation to analyze the effect of wastegate diameter on the engine performance, including power output and fuel economy. Mainly the wastegate diameter is optimized under full engine operating conditions. Finally an optimal MAP of wastegate diameter is drawn out through interpolation method. By the transmission relationship between wastegate and actuator, a wastegate control MAP for electric actuated wastegate can be obtained.
2016-04-01
Standard
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
2016-03-31
Article
Ford's 6.7-L diesel V8 has yet to obtain certified power ratings, but it's expected to exceed 900 lbft of torque, necessitating an upgrade of the company's dyno sleds to enable SAE J2807 vehicle tow testing.
2016-03-31
WIP Standard
AMS2371K

This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought corrosion and heat-resistant steel and alloy products and of forging stock.

2016-03-30
WIP Standard
AS85049/134A
No scope available.
2016-03-30
WIP Standard
J2194
Any ROPS meeting the performance requirement of ISO 5700 (Static ROPS Test Standard) or ISO 3463 (Dynamic ROPS Test Standard) meets the performance requirements of this SAE Standard if the ROPS temperature/material and seat belt requirements of this document are also met. Fulfillment of the intended purpose requires testing as follows: A temperature-material requirement (6.9). This can be satisfied by using the appropriate materials or by performing any of the structural performance tests (Sections 7, 8, or 9) at -18 °C. A laboratory test, under repeatable and controlled loading, to permit analysis of the ROPS for compliance with the performance requirements of this document. Either the static test sequence (Section 7) or the impact test sequence (Section 8 ) shall be conducted. See Figure 1. A seat belt anchorage test (Section 10). The test procedures and performance requirements outlined in this document are based on currently available engineering data.
2016-03-30
WIP Standard
J1194
Fulfillment of the intended purpose requires testing as follows: A laboratory test, under repeatable and controlled loading, to permit analysis of the ROPS for compliance with the performance requirements of this SAE Standard. Either the static test (6.1) or the dynamic test (6.2) shall be conducted. A crush test to verify the effectiveness of the deformed ROPS in supporting the tractor in an upset attitude. A field upset test under reasonably controlled conditions, both to the rear and side, to verify the effectiveness of the protective system under actual dynamic conditions. (See 6.4.1.1 for requirements for the omission of this test). In addition to the laboratory and field loading requirements, there is a temperature-material requirement. (See 7.1.2.) The test procedures and performance requirements outlined in this document are based on currently available engineering data.
2016-03-29
WIP Standard
J913
This SAE Standard is applicable for determining the wicking characteristics of seat fabrics, convertible tops, headlining, fiber padding, and other automotive textile materials.
2016-03-28
Standard
AMS2658D
This specification establishes hardness and electrical conductivity acceptance criteria of finished or semi-finished parts of wrought aluminum alloys.
2016-03-27
Article
Self-driving car project CEO John Krafcik discussed Google's work underway toward fully autonomous vehicles, at a recent NY forum. First likely market: the elderly and impaired.
2016-03-27
Technical Paper
2016-01-1720
Anurag Durve, Jyotirmoy Barman, Rizwan Khan
Abstract Direct injection compression ignition engines have proved to be the best option in light duty applications but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternate fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged, intercooled, DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The effect of biodiesel addition to diesel on engine performance, combustion, and emissions were studied in a turbocharged, high-pressure common rail diesel engine. Biodiesel/diesel blends with different biodiesel fractions were used and compared with neat biodiesel and diesel at different engine loads and speeds.
2016-03-27
Technical Paper
2016-01-1738
Natt Winitthumkul, Peerapat Phondeenana, Nuksit Noomwongs
Abstract According to the recent study, Thailand has the 2nd most dangerous road in the world. Based on many researches, the driver is the main influencers of the traffic fatalities. Since the more dangerous the driver drive, the more chance of accident become. Therefore, driver’s monitoring system become one of the solutions that acceptable and reliable, especially for fleet management and public transportation. This paper’s goal is to find an algorithm that can distinguish driving behaviour based on cars’ acceleration and velocity, calling it as Risk Driving Score (RDS). The algorithm was tested by driving test by volunteers on highways with observers, who were told to rank the drivers in terms of driving risk from the 1-5 point. Meanwhile, the drivers were asked to drive in 3 different styles, normal, safety, and hurry. All drives were recorded by satellite and video data then filtered and used for the algorithm calculation.
2016-03-27
Technical Paper
2016-01-1736
Manida Tongroon, Amornpoth Suebwong, Mongkon Kananont, Siamnat Panassorn, Paritud Bhandhubanyong
Abstract The effects of high quality biodiesel, namely, partially Hydrogenated Fatty Acid Methyl Ester or H-FAME, on 50,000km on-road durability test of unmodified common-rail vehicle have been investigated. Thailand brand new common-rail light duty vehicle, Isuzu D-Max Extended cab, equipped with 4JK1-TCX engine (DOHC 4-cylinder 2.5L, M/T 4×2, Euro IV emission) was chosen to undergo on-road test composed of well-mixed types of mountain, suburb and urban road conditions over the entire 50,000km. Palm-derived high quality biodiesel, H-FAME, conforming to WWFC (worldwide fuel charter) specification, was blended with normal diesel (Euro IV) at 20% (v/v) as tested fuel. Engine performance (torque and power), emission (CO, NOx, HC+NOx and PM), fuel consumption and dynamic response (0-100km acceleration time and maximum velocity) were analyzed at initial, middle and final distance; whereas, used lube oil analysis was conducted every 10,000km.
2016-03-25
WIP Standard
AIR5661A
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
Viewing 181 to 210 of 24120

Filter