Display:

Results

Viewing 181 to 210 of 24160
2016-04-05
Technical Paper
2016-01-1594
Petter Ekman, Roland Gardhagen, Torbjorn Virdung, Matts Karlsson
Abstract Considerable amounts of the everyday goods transports are done using light trucks. In the last ten years (2005-2015), the number of light trucks has increased by 33 % in Sweden. The majority of these light trucks are fitted with a swap body and encounter the same problem as many other truck configurations, namely that several different manufacturers contribute to the final shape of the vehicle. Due to this, the aerodynamics of the final vehicle is often not fully considered. Hence there appears to be room for improving the aerodynamic performance. In this study the flow around a swap body fitted to a light truck has been investigated using Computational Fluid Dynamics. The focus has been on improving the shape of the swap body in order to reduce both the aerodynamic drag and fuel consumption, while still keeping it usable for daily operations.
2016-04-05
Technical Paper
2016-01-1600
Pruthviraj Mohanrao Palaskar, Vivek Kumar, Rohit Vaidya
Abstract Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
2016-04-05
Technical Paper
2016-01-1607
David Soderblom, Per Elofsson, Ann Hyvärinen
Abstract The effect of blockage due to the presence of the wind tunnel walls has been known since the early days of wind tunnel testing. Today there are several blockage correction methods available for correcting the measured aerodynamic drag. Due to the shape of the test object, test conditions and wind tunnel dimensions the effect on the flow may be different for two cab variants. This will result in a difference in the drag delta between so-called open-road conditions and the wind tunnel. This makes it more difficult to evaluate the performance of two different test objects when they are both tested in a wind tunnel and simulated in CFD. A numerical study where two different cab shapes were compared in both open road condition, and in a digital wind tunnel environment was performed.
2016-04-05
Technical Paper
2016-01-1573
Ken Archibald, Kyle Archibald, Donald Neubauer
Abstract This paper will document a rationale for wheel straightening based on the rise of declining roads, increased consumer preference for lower profile tires, unintended consequences of wheel customization and the reduction in energy consumption. A recommended patented procedure detailing how A356-T6 wheels can be straightened will be presented. To validate the recommended procedure a sample of wheels was uniformly deformed and straightened and subsequently tested per SAE J328 and SAE J175. Test results are provided that indicate straightened wheels should be fully serviceable in their intended service. A laboratory protocol to replicate the wheel flange cracks is described. The protocol is used to demonstrate that wheels without deformations do not result in flange cracks. Conversely wheels with deformations in excess of 1.5mm do result in cracks at less than 750,000 cycles.
2016-04-05
Technical Paper
2016-01-1582
Dirk Wieser, Sabine Bonitz, Lennart Lofdahl, Alexander Broniewicz, Christian Nayeri, Christian Paschereit, Lars Larsson
Abstract Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
2016-04-05
Technical Paper
2016-01-1581
Felix Wittmeier, Armin Michelbach, Jochen Wiedemann, Victor Senft
Abstract With its recent wind tunnel upgrade, FKFS installed the first interchangeable three-belt / five-belt-system (FKFS first®) in a full scale automotive wind tunnel. With the five-belt system, which today is a state-of-the-art ground simulation technique, the system is ideally suited for production vehicle development work. The five-belt system offers high flexibility, quick access to the underfloor and vehicle fixation, and setting the vehicle’s ride height by the restraint device. The first results of the five-belt system have already been published in SAE 2015-01-1557 [1]. The three-belt system on the other hand, offers a much more sophisticated ground simulation technique which is necessary especially for sports and racing cars. For such vehicles with very low ground clearances, it is important to have a more accurate ground simulation, in order to capture the same aerodynamic modes of action and response as on the road.
2016-04-05
Technical Paper
2016-01-1588
Abdalla Abdel-Rahman, Martin Agelin-Chaab, Gary Elfstrom, John Komar
Abstract Wind tunnels with integrated aerodynamic and thermodynamic testing with yaw capabilities are not common. In this study however, an integrated aerodynamic and thermodynamic testing system with yaw capabilities is developed and applied in the climatic wind tunnel at the University of Ontario-Institute of Technology (UOIT). This was done by installing an incremental force measuring system (FMS) on the large turntable that features a chassis dynamometer. The testing system was utilized to implement an integrated aero-thermal test on a full-scale race car. An efficient testing protocol was developed to streamline the integrated testing process. The FMS was used to enhance the test car’s stability, cornering speed, and fuel efficiency by using aerodynamic devices. These objectives were achieved by installing a high rear wing to increase the rear downforce, a modified front splitter extension to produce a front downforce gain, and front canards to contribute to drag reduction.
2016-04-05
Technical Paper
2016-01-0029
Chuanliangzi Liu, Bo Chen, Ming Cheng, Anthony Champagne, Keyur Patel
Abstract The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
2016-04-05
Technical Paper
2016-01-0048
Sundaravadivelu Kandavelu, Anil Kumar Velagapudi, Raghavendra Nese, Satish Thimmalapura
Abstract The effort involved in automotive software test/calibration at road level is very high and cost involved is also commendable because of the involved proto level samples. Further the on-road test/calibration process is sensitive to external factors like drive pattern and environmental conditions. It is always a challenge for any OEM, to come up with an efficient process, which optimizes development cost, time and reliability of the product. The model based test/calibration process is always a dream for any engineer to work on, as it has big advantage of cost, reproducibility and repeatability of test cases [1]. But the challenge lies in achieving the closeness to reality with limited availability of crucial data for model parameterization. Activity at test bed level bridges the gap between the on-road and model based test/calibration achieving high maturity level at optimal cost/time. Current vehicle has many systems, which work in synergy to create an impact on end customer.
2016-04-05
Technical Paper
2016-01-0045
Takanori Uno, Akahori Ichiro, Yoichiro Hara
Abstract In this paper, consideration is made to create a simulation model of the BCI test method, which is one of the EMC evaluation methods for in-vehicle electronic devices, and an intrinsic model of a BCI probe is provided. Using this model, it is demonstrated that when the impedance of the BCI probe is sufficiently high, the BCI probe serves as a transformer with a winding ratio of 1:1, and the admittance of a line or a load connected to each wire becomes proportional to the magnitude of current flowing in each wire. This model can also be applied when the leakage inductance inside the BCI probe is taken into consideration. The validity of this model is verified by experiment using a jig which can clamp multiple wires. In addition, by using this model, it is demonstrated that the S-parameters for dozens of wires clamped in the BCI probe can be generated using the S-parameter measurement results from when one wire is in the BCI probe.
2016-04-05
Technical Paper
2016-01-0055
Mark Steffka, Cyrous Rostamzadeh
Abstract Automotive systems can generate un-intentional radio frequency energy. The levels of these emissions must be below maximum values set by the Original Equipment Manufacturer (OEM) for customer satisfaction and/or in order to meet governmental requirements. Due to the complexity of electromagnetic coupling mechanisms that can occur on a vehicle, many times it is difficult to measure and identify the noise source(s) without the use of an electromagnetic interference (EMI) receiver or spectrum analyzer (SA). An efficient and effective diagnostic solution can be to use a low-cost portable, battery powered RF detector with wide dynamic range as an alternative for automotive electromagnetic compatibility (EMC) and design engineers to identify, locate, and resolve radio frequency (RF) noise problems. A practical circuit described here can be implemented easily with little RF design knowledge, or experience.
2016-04-05
Technical Paper
2016-01-0051
Hongyu Zheng, Mingxin Zhao
Abstract Electric power steering (EPS), active front wheel steering (AFS) and steer by wire systems (SBW) can enhance the handling stability and safety of the vehicle, even in dangerous working conditions. Now, the development of the electric control steering system (ECS) is mainly based on the way that combines the test of the electric steering hardware-in-loop (HIL) test bench with real vehicle tests. However, the real vehicle tests with higher cost, long cycle and vulnerable to space weather have the potential safety problems at early development. On contrast, electronic control steering HIL test bench can replace real vehicle tests under various working conditions and make previous preparations for real vehicle road tests, so as to reduce the number of real vehicle test, shorten the development cycle, lower development costs, which has gradually become the important link of research and development of electronic steering system.
2016-04-05
Technical Paper
2016-01-0053
Abhishek Sharma
Abstract Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
2016-04-05
Technical Paper
2016-01-0052
Jihas Khan
Abstract HILS is a proven and essential part of the embedded product development life cycle which strives to reduce effort, time and cost spent on automotive validation activities. An efficient HILS system allows to create a precise simulation environment for the ECU which is made to believe that it is sitting inside a real vehicle and there by the intended functionalities implemented in the same could be tested even before the vehicle prototypes or other ECUs or sensors and actuators are available. An inefficient and faulty HILS system provides erroneous test results which could lead to wrong inferences. This paper is proposing a standardized process flow aided by specific documentation and design concepts which validates that the test system designed is robust and caters to the actual requirement. The Design stage starts by a requirement gathering phase where the analysis of the device under test is executed in detail.
2016-04-05
Technical Paper
2016-01-0099
Deepak Venkatesh, Arockia Selvakumar
Abstract The concept of camless engines enables us to optimize the overall engine efficiency and performance, as it provides great flexibility in valve timing and valve displacement. This paper deals with design of camless engines with pneumatic actuator. The main objective is to build a prototype and test its performance at different engine speeds. Also an extensive research on the sensors is done to detect the various sensors that could be used to identify the crankshaft position. Here the features and advantages over conventional engines are discussed. In addition the overview of the camless system in the engine is focused along with the design principle and the components used. The system thus designed is capable of actuating at 1500 rpm and demonstrates the ability of pneumatic actuators to be used in an internal combustion engine with low rpm needs.
2016-04-05
Technical Paper
2016-01-0115
Dev S. Kochhar, Hong Zhao, Paul Watta, Yi Murphey
Abstract Lane change events can be a source of traffic accidents; drivers can make improper lane changes for many reasons. In this paper we present a comprehensive study of a passive method of predicting lane changes based on three physiological signals: electrocardiogram (ECG), respiration signals, and galvanic skin response (GSR). Specifically, we discuss methods for feature selection, feature reduction, classification, and post processing techniques for reliable lane change prediction. Data were recorded for on-road driving for several drivers. Results show that the average accuracy of a single driver test was approx. 70%. It was greater than the accuracy for each cross-driver test. Also, prediction for younger drivers was better.
2016-04-05
Technical Paper
2016-01-0105
Yogesh Chandra Sharma
Abstract This technical paper aims to provide a framework for simulating the thermal behavior of an automotive electrical connector with the current flow across each terminal. An automotive electrical connector uses multiple terminals fitted in the respective cavity of a connector. Temperature at terminal increases with the current flow level across it. This temperature rise occurs due to resistive heat loss in the terminal. Due to this, temperature in the surrounding cavities also rises; hence, the current carrying capacity of those cavities reduces. Analysis of similar scenarios for design alternatives and design decisions is important to develop reliable and optimized solutions. The reliable and optimized solution helps to save the cost. There is a large variation of different terminals used in the wiring harness, and there are various parameters attributing to this variation (shape, size, material, plating etc…).
2016-04-05
Technical Paper
2016-01-0120
Libo Huang, Huanlei Chen, Zhuoping Yu, Jie Bai
Abstract Automotive radar is the most important component in the autonomous driving system, which detects the obstacles, vehicles and pedestrians around with acceptable cost. The target tracking is one of the key functions in the automotive radar which estimates the position and speed of the targets having regarding to the measurement inaccuracy and interferences. Modern automotive radar requires a multi-target tracking algorithm, as in the radar field of view hundreds of targets can present. In practice, the automotive radar faces very complicated and fast-changing road conditions, for example tunnels and curved roads. The targets’ unpredictable movements and the reflections of the electromagnetic wave from the tunnel walls and the roads will make the multi-target tracking a difficult task. Such situation may last several seconds so that the continuous tracks of the targets cannot be maintained and the tracks are dropped mistakenly.
2016-04-05
Technical Paper
2016-01-0123
Mostafa Anwar Taie, Mohamed ElHelw
Abstract The evaluation of Advanced Driver Assistance Systems (ADAS including driver assistance and active safety) has increasing interest from authorities, industry and academia. AsPeCSS active safety project concludes that good results in a laboratory test for active safety system design does not necessarily equate to an effective system in real traffic conditions. Moreover, many ADAS assessment projects and standards require physical testing on test tracks (dummy vehicles, pedestrian mannequins…), which are expensive and limit testing capabilities. This research presents a conceptual framework for on-board evaluation (OBE) of ADAS, which can be used as a cost effective evaluation in real-life traffic conditions. OBE shall monitor, record, analyze and report both internal behavior and external environment (external objects list and video stream) of ADAS under evaluation (ADASUE).
2016-04-05
Technical Paper
2016-01-0146
Yonghwan Jeong, Seonwook Kim, Kyongsu Yi, Sangyong Lee, ByeongRim Jo
Abstract This paper represents a parking lot occupancy detection and parking control algorithm for the autonomous valet parking system. The parking lot occupancy detection algorithm determine the occupancy of the parking space, using LiDAR sensors mounted at each side of front bumper. Euclidean minimum spanning tree (EMST) method is used to cluster that information. After that, a global parking map, which includes all parking lots and access road, is constructed offline to figure out which cluster is located in a parking space. By doing this, searching for available parking lots has been finished. The proposed parking control algorithm consists of a reference path generation, a path tracking controller, and a parking process controller. At first, route points of the reference path are determined under the consideration of the minimum turning radius and minimum safety margin with near parking.
2016-04-05
Technical Paper
2016-01-0139
Andreas Himmler, Klaus Lamberg, Tino Schulze, Jann-Eve Stavesand
Abstract Increasing productivity along the development and verification process of safety-related projects is an important aspect in today’s technological developments, which need to be ever more efficient. The increase of productivity can be achieved by improving the usability of software tools and decreasing the effort of qualifying the software tool for a safety-related project. For safety-critical systems, the output of software tools has to be verified in order to ensure the tools’ suitability for safety-relevant applications. Verification is particularly important for test automation tools that are used to run hardware-in-the-loop (HIL) tests of safety-related software automatically 24/7. This qualification of software tools requires advanced knowledge and effort. This problem can be solved if a tool is suitable for developing safety-related software. This paper explains how this can be achieved for a COTS test automation tool.
2016-04-05
Technical Paper
2016-01-0270
Zhigang Wei, Limin Luo, Michael Start, Litang Gao
Product validation and reliability demonstration require testing of limited samples and probabilistic analyses of the test data. The uncertainties introduced from the tests with limited sample sizes and the assumptions made about the underlying probabilistic distribution will significantly impact the results and the results interpretation. Therefore, understanding the nature of these uncertainties is critical to test method development, uncertainty reduction, data interpretation, and the effectiveness of the validation and reliability demonstration procedures. In this paper, these uncertainties are investigated with the focuses on the following two aspects: (1) fundamentals of the RxxCyy criterion used in both the life testing and the binomial testing methods, (2) issues and benefits of using the two-parameter Weibull probabilistic distribution function.
2016-04-05
Technical Paper
2016-01-0268
Junqi Yang, Zhenfei Zhan, Ling Zheng, Helen Yu, Yazhou Jiang, Hui Zhao, Jie LI
Abstract Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
2016-04-05
Technical Paper
2016-01-0235
Serenat Karagoz, Murat Karaer, Nurettin Ali Dasdemir
Abstract In this paper a combined energy recovery system is suggested for engine test facilities. System consists of two semi loops which are being active according to the temperature of the air feeded to the test cell. Winter and summer semi loops are introduced with the system requirements and equipments. Working principle of both semi-loops and components with the selection critera are explained. Also cost and benefit analysis is given in detail. It is evident that hot exhaust gases of the combustion processes is the main source that a large amount of energy wastes through it. Researchers confirm that more than 30% - 40% of fuel energy in the internal combustion engines wastes from the exhaust and just 12% -25% of the fuel energy converts to useful work. In the other hand, statistics show that producing numbers of the internal combustion engines growth very fast and the concern of decreasing the fossil fuels will be appeared.
2016-04-05
Technical Paper
2016-01-0293
Jaspreet Singh, Vishnu Agrawal
Abstract The paper expresses an important issue of optimum selection of a supercharger for a given application from the global market in the presence of a variety of superchargers available commercially off the shelf (COTS). Coding scheme suggested is based on developing an attribute based scheme for all superchargers available off the shelf. N-digit coding scheme provides in-depth understanding of all the attributes to be considered by the customers, designers, engineers and engineers of the industry for further improvement. We also aim to create exhaustive database of superchargers along with their attributes. The paper adopts a MADM-TOPSIS (Multiple Attribute Decision Making -Technique for Order of Preference by Similarity to Ideal Solution) technique and graphical methods that are being used widely in different disciplines and are published. The method ensures that the optimum supercharger is closest to the hypothetically best solution and farthest from the worst solution.
2016-04-05
Technical Paper
2016-01-0272
Huairui Guo, David Dronzkowski
Abstract Pre-production vehicle validation is a critical step in understanding what potential issues end customers may find. Road profiles used in vehicle level tests are critical in finding failures. Clearly, if all the vehicles are tested only on highway, many failures will not be discovered. Therefore, using the right road profiles is very important. Traditionally, customer survey data is used to identify an appropriate road profile by defining a route that represents the Xth percentile customer. In this paper, a clustering method is applied to group all the customers into several groups. Each group is represented by a single road profile, and the entire customer population can be represented by multiple road profiles. If vehicles are tested using these profiles, then the road test can better represent the field condition, and hopefully failures can be discovered more efficiently.
2016-04-05
Technical Paper
2016-01-0273
Richard DeJong, Se Ge Jung, John Van Baren
Abstract Methods for conducting accelerated vibration fatigue testing of structures, such as MIL-STD-810G, allow for the non-linear scaling of the test time with the inverse of the rms vibration amplitude based on the slope of the material S-N curve obtained from cyclic fatigue tests. The Fatigue Damage Spectrum (FDS) is used as a method to allow for different level scalings at different frequencies in a broadband vibration environment using the relative responses of resonances in the structure. A recent development in industry has been to mix impulses with random excitations to increase the vibration peak levels (as measured by the kurtosis), thereby accelerating the fatigue even more than would occur with a Gaussian excitation. This paper presents results from a study to determine the conditions under which high kurtosis, impulsive excitations actually produce high kurtosis responses in structural resonances thus increasing the level of the FDS.
2016-04-05
Technical Paper
2016-01-0274
Sharon L. Honecker, David J. Groebel, Adamantios Mettas
Abstract In order to accurately predict product reliability, it is best to design a test in which many specimens are tested for a long duration. However, this scenario is not often practical due to economic and time constraints. This paper describes a reliability test in which a limited number of specimens are tested with little time remaining before the scheduled start of production. During the test, an unexpected failure mode that can be mitigated through a product redesign occurs. Because the scheduled start of production is near, there is not enough time to perform a test with redesigned specimens, so the current test proceeds as planned. We discuss several methods and the associated assumptions that must be made to account for the presence of the unexpected failure mode in the test data in order to make predictions of reliability of the redesigned product.
2016-04-05
Technical Paper
2016-01-0323
Sashank Mani Vedula, Nabal Kishore Pandey, KumarPrasad Tellikepalli, Satish Thimmalapura
Abstract OEMs these days are focusing on front loading the activities to Virtual Test Environment (VTE) based development owing to high development cost and complexity in achieving repeatability during testing phase of vehicle development,. This process not only helps in reducing the cost and time but also helps in increasing the maturity and confidence level of the developed system before actual prototype is built. In the past, extensive research has happened for increasing the fidelity of VTE by improving plant model efficacy which involves powertrain and other vehicle systems. On the other hand, improving the precision of driver model which is one of the most complex nonlinear systems of virtual environment still remains a challenge. It is apparent that various drivers show different behavior in real world for a given drive profile. While modelling a driver for a VTE, the real world driver attributes are seldom considered.
2016-04-05
Technical Paper
2016-01-0320
Tejas Janardan Sarang, Mandar Tendolkar, Sivakumar Balakrishnan, Gurudatta Purandare
Abstract In the automotive industry, multiple prototypes are used for vehicle development purposes. These prototypes are typically put through rigorous testing, both under accelerated and real world conditions, to ensure that all the problems related to design, manufacturing, process etc. are identified and solved before it reaches the hands of the customer. One of the challenges faced in testing, is the low repeatability of the real world tests. This may be predominantly due to changes in the test conditions over a period of time like road, traffic, climate etc. Estimating the repeatability of a real world test has been difficult due to the complex and multiple parameters that are usually involved in a vehicle level test and the time correlation between different runs of a real world test does not exist. In such a scenario, the popular and the well-known univariate correlation methods do not yield the best results.
Viewing 181 to 210 of 24160

Filter