Display:

Results

Viewing 151 to 180 of 24118
2016-04-05
Technical Paper
2016-01-0045
Takanori Uno, Akahori Ichiro, Yoichiro Hara
Abstract In this paper, consideration is made to create a simulation model of the BCI test method, which is one of the EMC evaluation methods for in-vehicle electronic devices, and an intrinsic model of a BCI probe is provided. Using this model, it is demonstrated that when the impedance of the BCI probe is sufficiently high, the BCI probe serves as a transformer with a winding ratio of 1:1, and the admittance of a line or a load connected to each wire becomes proportional to the magnitude of current flowing in each wire. This model can also be applied when the leakage inductance inside the BCI probe is taken into consideration. The validity of this model is verified by experiment using a jig which can clamp multiple wires. In addition, by using this model, it is demonstrated that the S-parameters for dozens of wires clamped in the BCI probe can be generated using the S-parameter measurement results from when one wire is in the BCI probe.
2016-04-05
Technical Paper
2016-01-0053
Abhishek Sharma
Abstract Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
2016-04-05
Technical Paper
2016-01-0055
Mark Steffka, Cyrous Rostamzadeh
Abstract Automotive systems can generate un-intentional radio frequency energy. The levels of these emissions must be below maximum values set by the Original Equipment Manufacturer (OEM) for customer satisfaction and/or in order to meet governmental requirements. Due to the complexity of electromagnetic coupling mechanisms that can occur on a vehicle, many times it is difficult to measure and identify the noise source(s) without the use of an electromagnetic interference (EMI) receiver or spectrum analyzer (SA). An efficient and effective diagnostic solution can be to use a low-cost portable, battery powered RF detector with wide dynamic range as an alternative for automotive electromagnetic compatibility (EMC) and design engineers to identify, locate, and resolve radio frequency (RF) noise problems. A practical circuit described here can be implemented easily with little RF design knowledge, or experience.
2016-04-05
Technical Paper
2016-01-0052
Jihas Khan
Abstract HILS is a proven and essential part of the embedded product development life cycle which strives to reduce effort, time and cost spent on automotive validation activities. An efficient HILS system allows to create a precise simulation environment for the ECU which is made to believe that it is sitting inside a real vehicle and there by the intended functionalities implemented in the same could be tested even before the vehicle prototypes or other ECUs or sensors and actuators are available. An inefficient and faulty HILS system provides erroneous test results which could lead to wrong inferences. This paper is proposing a standardized process flow aided by specific documentation and design concepts which validates that the test system designed is robust and caters to the actual requirement. The Design stage starts by a requirement gathering phase where the analysis of the device under test is executed in detail.
2016-04-05
Technical Paper
2016-01-0099
Deepak Venkatesh, Arockia Selvakumar
Abstract The concept of camless engines enables us to optimize the overall engine efficiency and performance, as it provides great flexibility in valve timing and valve displacement. This paper deals with design of camless engines with pneumatic actuator. The main objective is to build a prototype and test its performance at different engine speeds. Also an extensive research on the sensors is done to detect the various sensors that could be used to identify the crankshaft position. Here the features and advantages over conventional engines are discussed. In addition the overview of the camless system in the engine is focused along with the design principle and the components used. The system thus designed is capable of actuating at 1500 rpm and demonstrates the ability of pneumatic actuators to be used in an internal combustion engine with low rpm needs.
2016-04-05
Journal Article
2016-01-0102
Michael Ludwig, Martin Rieder, Marco Wolf
Abstract Due to regulations which limit the CO2 emission of passenger vehicles in the upcoming years, hybrid cars are becoming more and more important. In this paper different concepts of hybridization are discussed with a link to the properties of the electric machine behind these hybrid concepts. Upon the basis of a generalized principle of operation of an electric machine the influence of position and speed data, acquired by a rotary position sensor, is presented with a detailed analysis of various sensor concepts. Therefore the major products used nowadays are presented with a brief introduction to the underlying measurement principle. Additionally a new semiconductor-based sensor concept is introduced with high measurement accuracy and of small form factor.
2016-04-05
Technical Paper
2016-01-0575
Konstantinos Siokos, Rohit Koli, Robert Prucka, Jason Schwanke, Shyam Jade
Abstract Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
2016-04-05
Journal Article
2016-01-0578
Giuseppe Cicalese, Fabio Berni, Stefano Fontanesi
Abstract New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
2016-04-05
Technical Paper
2016-01-0419
Whitney Poling, Vesna Savic, Louis Hector, Anil Sachdev, Xiaohua Hu, Arun Devaraj, Fadi Abu-Farha
Abstract The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
2016-04-05
Technical Paper
2016-01-0414
Nehal Sardar Rahim
Abstract The Aisin A465 6-Speed Diesel Hybrid powertrain started production in early 2012 and is available in the North American market in the Hino 195h DC COE truck. The suitability, and added fuel efficiency, of a Hybrid powertrain for Class 5 Box truck is very dependent on fleet usage conditions and duty cycle. Aisin has undertaken real-world, extended mileage, durability testing on public roads to determine the operational modes for which such a powertrain is most suitable, and for which a fleet owner can expect fuel savings that will result in a payback period justifying the higher cost of a hybrid system equipped commercial truck. Data collected on the same Aisin proprietary durability test routes with a Conventional Class 3-5 Cab Chassis truck provides insights into truck usage parameters that differ between Hybrid and Conventional Class 3-5 commercial trucks.
2016-04-05
Technical Paper
2016-01-0415
Sijin Wu, Xinya Gao, Yong Lv, Yanpeng Jiang, Yao Fang, Aiguo Zhou
Abstract Temporal phase-shifting and spatial-carrier techniques are the two dominant phase extraction methods used in digital speckle pattern interferometry (DSPI). Temporal phase-shifting technique enjoys the advantages of precise phase extraction and capability of high-quality phase map formation, but suffers from the limitation in its use in dynamic measurement due to the time cost for carrying out the phase shift. To meet the rising demand of dynamic measurement of deformations in modern industry, spatial-carrier technique is developed to extract the phase information from a single speckle interferogram, yielding less time cost during a test. In this paper, both temporal phase-shifting and spatial-carrier techniques are investigated in theory as well as experiment. The experiment results from measuring a same deformation behavior using both techniques are used to compare the performances of the two phase extraction techniques.
2016-04-05
Technical Paper
2016-01-0417
Wan Xu, Xinfeng Shi, Tian Bai, Guobiao Yang, Lianxiang Yang, Changqing Du, Dajun Zhou, Yongjun Zhou
Abstract In Aluminum Alloy, AA, sheet metal forming, the through thickness cracking at the edge of cut out is one of the major fracture modes. In order to prevent the edge cracking in production forming process, practical edge stretch limit criteria are needed for virtual forming prediction and early stamping trial evaluations. This paper proposes new methods for determining the edge stretching limit of the sheet coupons, with and without pre-stretching, based on the Digital Image Correlation (DIC) technique. A numbers of sets of notch-shaped smaller coupons with three different pre-stretching conditions (near 5%, 10% and fractured) are cut from the prestretched large specimens. Then the notch-shaped smaller coupons are stretched by uniaxial tension up to through edge cracking observed. A dual-camera 3D-DIC system is utilized to measure both coupon face strain and thickness strain in the notch area at the same time.
2016-04-05
Technical Paper
2016-01-0418
Xin Xie, Danielle Zeng, Junrui Li, Jeffrey Dahl, Qiancheng Zhao, Lianxiang Yang
Abstract Polymer plastics are widely used in automotive light weight design. Tensile tests are generally used to obtain material stress-strain curves. Due to the natural of the plastic materials, it could be elongated more than several hundred percent of its original length before breaking. Digital Image Correlation (DIC) Analysis is a precise, full field, optical measurement method. It has been accepted as a practical in-field testing method by the industry. However, with the traditional single-camera or dual-camera DIC system, it is nearly impossible to measure the extreme large strain. This paper introduces a unique experimental procedure for large elongation measurement. By utilization of quad-camera DIC system and data stitch technique, the strain history for plastic material under hundreds percent of elongation can be measured. With a quad-camera DIC system, the correlation was conducted between two adjacent cameras.
2016-04-05
Technical Paper
2016-01-0405
Fupin Wei, Li Xu, Chen Cao, Youmei Zhao
Crash Test Dummies are the very important tools to evaluate the vehicle safety performance. In order to ensure the dummy performance during the crash tests, the dummy components need to be certificated. In the neck certification procedure, the head angle is the most important parameter, which is the head rotation respect to the neck base. To get the head angle, couples of rotary potentiometers should be mounted either on the calibration fixture or on the dummy head. The rotation is then calculated from those potentiometer readings. There are two potentiometers mounted in the Hybrid III family dummies, while three potentiometers mounted in ES2, ES-2re, SID-IIs, and WorldSid 50th dummies. In the certification, maximum head angle and time occurred should be within certain ranges in the Hybrid III family dummies while for the ES2 and WorldSid 50th dummies, not only the maximum head angle, but also the other angles and their timings should meet the requirements.
2016-04-05
Technical Paper
2016-01-0410
Joseph V. Gabiniewicz, Douglas M. Baker, Michael Testani
Abstract Historically, driveshaft torque data has been obtained using slip rings. Slip rings, however, are expensive, and require time-intensive driveshaft modifications for proper installation. In addition, the time and expense involved in field servicing units is prohibitive. For these reasons, AISIN Technical Center of America (ATCA) investigated a viable telemetry solution. At the onset of this development activity, existing torque telemetry solutions had their own issues. In particular, they did not offer the same data resolution as slip rings, they lacked sufficient battery life for long-term, real-world testing applications, and they suffered from data drop-outs. ATCA worked with TECAT Performance Systems to develop a torque telemetry solution that addressed all of these issues. This paper presents the development activity involved, alongside real-world measurement data showing the results of both the slip ring and telemetry solutions.
2016-04-05
Technical Paper
2016-01-0463
Juan Sierra, Camilo Cruz, Luis Munoz, Santiago Avila, Elkin Espitia, Jaime Rodriguez
Abstract Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
2016-04-05
Journal Article
2016-01-0459
Jian Zhao, Jing Su, Bing Zhu, Jingwei Shan
Abstract Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
2016-04-05
Technical Paper
2016-01-0451
Fu Wenkui, Liu Ligang, Shu Jin, Wang Dawei, Xu Long
Abstract Virtual Road Load Data Acquisition (vRLDA) is to replace traditional Road Load Data Acquisition (RLDA) thus becomes the important method to obtain the load for the fatigue analysis of the vehicle components. Pothole event, which is a typical loadcase among vehicle durability test in the development process, is simulated based on Adams/Car in this paper. Flex-body is adopted in the full vehicle model in order to improve the simulation accuracy. Flexible ring tire model, FTire, is used for the benefit of validity in higher frequency domain. The result shows that simulation result correlated well both in wheel center travel and load of tire and suspension parts. Consequently, it is available to predict the max effective jounce travel and body max load in the early phase of vehicle development thus decrease the potential risk in the later phase and the total research cost. vRLDA is also proven as a reliable and effective method to obtain the load.
2016-04-05
Technical Paper
2016-01-0449
Xian Xu, Wei Chen, Yuan Cao, Yingxiong Zhang, Hu Guo
Abstract The stiffness of the frame has a great influence on the ride comfort of the heavy truck. Reducing frame thickness was proved to be unacceptable in terms of ride comfort, which is verified by the testing results. The truck frame was reinforced in order to improve the ride comfort. The modal analysis showed that the pitch frequency of the vehicle has increased 0.5 Hz and the frequency response has decreased by 20%. In order to research the influence of frame stiffness on the heavy truck ride comfort, a detailed model including a flex frame, chassis suspension, cab suspension, driveline, etc., was built by MSC.ADAMS. The Simulation results showed that the ride comfort can be improved by reinforce the frame, and the ride comfort can be improved by 5%∼10%. The results of this study need to be further examined through field testing.
2016-04-05
Technical Paper
2016-01-0441
Aref M. A. Soliman
Abstract An active suspension system has better performance than a passive suspension. However, it requires a significant amount of energy and is constructed from high cost components. To solve the problem of the power required, a switchable damper suspension system has been studied. In this paper, control strategies for the switchable damper suspension system and passive are compared in terms of their relative ride performance capabilities. Practical limitations involving switching time delay and threshold delay values are modeled and their effect on the ride performance are evaluated. The four setting switchable damper is compared with the two and three setting switchable dampers. The control strategies are used to maintain suspension working space level within design limit and to minimize body acceleration level. The results showed that the four setting switchable damper gives better ride improvements compared with the two and three setting switchable dampers.
2016-04-05
Technical Paper
2016-01-0429
Paul Augustine, Timothy Hunter, Nathan Sievers, Xiaoru Guo
Abstract The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
2016-04-05
Technical Paper
2016-01-0496
Leonardo Farfan-Cabrera, Ezequiel A. Gallardo
Abstract Debris are progressively generated just after wear occurred by the interaction of various mechanical elements inside the engines, steering gear boxes, transmissions, differentials, etc. Besides, debris could interfere with the normal operation of such components generating even more damage in other parts due to three-body abrasion. Hence, dynamic seals are susceptible to interact with very fine debris accumulated in the working lubes. Recently, owing to many test advantages, the micro-scale abrasion test has been extensively used to reproduce three-body abrasion in hard materials, coatings, polymers, etc., however, it has not been before employed for the wear assessment of elastomeric materials. This paper presents an adaptation of the micro-scale test method to study three-body abrasive behavior of an elastomeric dynamic seal (samples extracted from an automotive commercial Acrylonitrile-butadiene NBR rotary seal) under lubricated conditions.
2016-04-05
Technical Paper
2016-01-0484
Chad W. Chichester
Abstract Silicone fluids are known to have high Viscosity Indices (VI), and high Oxidation Onset Temperatures (OOT). Silicone VI and OOT characteristics make these fluids appealing for use as lubricants in high temperature applications, and where lubricant longevity is desired. Despite thermal and oxidative benefits, silicones lubricants have a reputation as being poor lubricants in metal-to-metal applications, and are typically only selected for use in plastic applications. Most industrial knowledge about silicone lubricants is based on characteristics of PolyDiMethyl Siloxanes (PDMS), in which case, lubricity limitations do exists. However, there are other silicone based lubricating fluid technologies, that have been commercially available for decades, that far exceed known lubricity performance of PDMS, and in some ways can rival traditional synthetic hydrocarbon.
2016-04-05
Technical Paper
2016-01-0486
Sakthinathan Ganapathy, K R Viswanathan, Saravanan Raju, Anand Kumar Appancheal
Abstract The intervention of Nanotechnology in the field of lubricants have found path to several new lubricants for high temperature applications. Nanolubricants are the nanoparticles suspended in base lubricants, are being developed to increase the performance of machine components at high temperatures, which reduces friction and wear in sliding contact encountered in many heat engines and industrial applications. An attempt has been made to study the effect of the Yttria stabilized Zirconia (YSZ), Calcia stabilized Zirconia(CSZ), and Aluminium Oxide nanoparticles in the lube oil base stock. The nanoparticles were synthesized using Ball mill and the nanoparticles were found to be in the range of 50 to 90 nm.
2016-04-05
Technical Paper
2016-01-0479
Kuniaki Goto, Takashi Kondo, Masakiyo Takahira, Eiji Umemura, Masashi Komada, Yasuhiko Nishimura
Abstract Generally, pass-by noise levels measured outdoors vary according to the influence of weather conditions, background noise and the driver’s skill. Manufactures, therefore, are trying to reproduce proving ground driving conditions on a chassis dynamometer. The tire noise that occurs on actual road surfaces, however, is difficult to reproduce in indoor tests. In 2016, new pass-by noise regulations (UN R51-03) will take effect in Europe, Japan and other countries. Furthermore, stricter regulations (2dB) will take effect in 2020. In addition to the acceleration runs required under current regulations, UN R51-03 will require constant speed runs. Therefore, an efficient measurement methods are necessary for vehicle development. To solve the above mentioned issues, an indoor evaluation system capable of reproducing the tire noise that occurs on road surfaces has been developed.
2016-04-05
Technical Paper
2016-01-0474
Shukai Yang, Bingwu Lu, Zuokui Sun, Yingjie Liu, Hangsheng Hou
Abstract A low frequency vibration issue around 3.2 Hz occurs during a commercial heavy truck program development process, and it is linked to extremely uncomfortable driving and riding experiences. This work focuses on an analytical effort to resolve the issue by first building a full vehicle MBS (multi-body-system) model, and then carrying out vibration response analyses. The model validation is performed by using full vehicle testing in terms of structural modes and frequency response characteristics. In order to resolve the issue which is excited by tire non-uniformity, the influence of the cab suspension, frame modes, front leaf spring system and rear tandem suspension is analyzed. The root cause of the issue is found to be the poor isolation of the rear tandem suspension system. The analytical optimization effort establishes the resolution measure for the issue.
2016-04-05
Technical Paper
2016-01-0464
Lingyang Li, Wei Wu, Ji Chen, Jianpeng Shi, Xicheng Wang, Liuhua Qian
Abstract In order to expand the product design and development capabilities of Electric Power Steering (EPS) system, a passenger car’s simulation model integrated with EPS system model will be made. Some analytical investigation is conducted in this paper. Through simplifying the architecture model of EPS system, the mathematical equation expressions of steering wheel and column, worm gear reducer, rack and pinion, steer-wheels, brushed DC electrical motor, and ECU assistance and compensation laws will be described. A number of tests on the EPS full system and subsystems and components will be executed. The tests’ results will be used as the input parameters of the model, and then be used for model validations. After that, the EPS system model will be created. Since the most important part of control logic strategy is the top secret of steering assembly supplier and it could’t be provided to OEM in details or not even a black-box model directly.
2016-04-05
Technical Paper
2016-01-0766
Tongyang Gao, Marko Jeftic, Geraint Bryden, Graham Reader, Jimi Tjong, Ming Zheng
Abstract The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
2016-04-05
Technical Paper
2016-01-0833
Lei Meng, Yuqiang Li, Karthik Nithyanandan, Timothy Lee, Chunnian Zeng, Chia-Fon Lee
Abstract To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
2016-04-05
Journal Article
2016-01-0896
Masami Ishikawa, Kazuo Yamamori, Satoshi Hirano, Teri Kowalski, James Linden
Abstract Fuel economy improvement has been one of the most important challenges for the automotive industry, and the oil and additive industries. The automotive, oil, and additive industries including related organizations such as SAE, ASTM, and testing laboratories have made significant efforts to develop not only engine oil technologies but also engine oil standards over decades. The API S category and ILSAC engine oil standard are well known and widely used engine oil specifications [1] [2]. The development of an engine oil standard has important roles to ensure the quality of engine oils in the market and encourage industries to improve the engine oil performance periodically. However, the progress of technology advancement can go faster than the revision of engine oil standard. An introduction of new viscosity grades, SAE 0W-16 and 5W-16 is one good example. The 16 grade was added into the SAE J300 standard that defines viscosity grades for engine oils in April 2013 [3].
Viewing 151 to 180 of 24118

Filter