Display:

Results

Viewing 91 to 120 of 24237
2016-08-17
WIP Standard
ARP4553B
This SAE Aerospace Recommended Practice (ARP) is intended to provide design and qualification requirements for self-displacing hydraulic accumulators.

These requirements are intended to be included in the Producrement Specification for the accumulator. Those requirements identified by the use of "shall" are considered to be essential requirements; those requirements identified by the use of "should" are considered to be optional requirements for inclusion in the Specificaiton at the discretion of the Purchaser.

In addition, test methods for production acceptance and qualification purposes are provided.

The accumulator is intended for use in military aerospace hydraulic systems with rated pressures of up to 8000 psi (55,158 kPa) and of the following types as specified in SAE AS 5440: Type I: -65 to +160 °F (-54 to +71 °C) fluid temperature; Type II: -65 to +275 °F (-54 to +135 °C) fluid temperature.

2016-08-17
WIP Standard
J1401

This SAE Standard specifies the performance tests and requirements for hydraulic brake hose assemblies used in the hydraulic braking system of a road vehicle. It also specifies the methods used for identification of the hose manufacturer.

This document applies to brake hose assemblies made of a hose fabricated from yarn and natural or synthetic elastomers and assembled with metal end fittings for use with nonpetroleum-base brake fluids as specified in SAE J1703, SAE J1704 and SAE J1705.

The nominal internal diameter of the brake hose shall fall within one of the following values:

    a. less than 4 mm (1/8 in or less)
    b. 4 to 5 mm (3/16 in)

2016-08-16
WIP Standard
AS85049/138B
Scope unavailable.
2016-08-16
WIP Standard
AS4211E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4220D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4210E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4224D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4807D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications. Correct the “V” dimension for size 10.
2016-08-16
WIP Standard
AS4221D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5002D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications..
2016-08-16
WIP Standard
AS5003D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4809D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5004D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
J183
This SAE Standard outlines the engine oil performance categories and classifications developed through the efforts of the Alliance of Automobile Manufacturers (Alliance), American Petroleum Institute (API), the American Society for Testing and Materials (ASTM), the Engine Manufacturers Association (EMA), International Lubricant Specification Advisory Committee (ILSAC) and SAE. The verbal descriptions by API and ASTM, along with prescribed test methods and limits are shown for active categories in Table 1 and obsolete categories in Table A1. Appendix A is a historical documentation of the obsolete categories. For purposes of this document, active categories are defined as those (a) for which the required test equipment and test support materials, including reference engine oils and reference fuels, are readily available, (b) for which ASTM or the test developer monitors precision for all tests, and (c) which are currently available for licensing by API EOLCS.
2016-08-15
Article
The MicReD Power Tester 600A from Mentor Graphics Corp. tests electric and hybrid vehicle (EV/HEV) power electronics reliability during power cycling.
2016-08-14
Article
Using simulators for RDE testing is a new aspect for the technology, experts say.
2016-08-12
Article
Anritsu Co. (Richardson, TX) introduces Cellular Module Test Application (CMTA) software for its Signaling Testers MD8475A/B, which provides test cases to simplify testing chipsets and automotive-related telematics modules used in connected car designs and implementation.
CURRENT
2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
CURRENT
2016-08-12
Standard
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
2016-08-10
WIP Standard
AIR6211A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with a relative ice penetration capacity of runway deicing/anti-icing chemicals, by measuring the ice penetration as a function of time. Such runway deicing/anti-icing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice penetration capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
2016-08-10
WIP Standard
AIR6170A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with relative ice melting capacity of runway deicing chemicals, by measuring the amount of ice melted as a function of time. Such runway deicing chemicals are often also used on taxiways. This test method does not quantitatively measure the theoretical or extended time ice melting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
Viewing 91 to 120 of 24237

Filter