Display:

Results

Viewing 61 to 90 of 24160
2016-06-22
Standard
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable. NOTES: 1. Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard. 2. AS595 should be used for commercial aircraft hydraulic pumps. 3. This document should not be used for hydraulic pumps in Electro-Hydrostatic Actuator applications (EHAs).
2016-06-17
Standard
J3095_201606
This recommended practice provides a procedure for measuring quantitatively the physical characteristics of linear impactors that are believed to effect impact test accuracy, repeatability, and reproducibility. Suggested values and tolerance are also provided for specific applications of linear impactor testing (i.e. Ejection Mitigation tests, Head form Impact tests, Body Block tests). Two functional groups of linear impactors are considered, those whose function is related primarily to displacement and those related to measuring acceleration or force.
2016-06-17
Standard
EIA599A
This Standard is applicable to suppliers of electronic components, assemblies, equipment and related materials. This standard establishes the general requirements to achieve a certified process. The use of this standard is intended for any manufacturing or service company whose goal is to achieve customer satisfaction through continuous improvement.
2016-06-17
Standard
RB4A
A guide for the use by companies contracting for design of electronic products with the Department of Defense (DOD) and other government agencies. This Bulletin present concepts and techniques for quantifying electronic equipment reliability. The techniques are responsive to the requirements of various branches of the Department of Defense and are also useful with regard to other Government agencies (e.g., NASA).
2016-06-16
Standard
EIACALS
This report documents the findings of an industry study panel convened by the Electronic Industries Association(EIA) under the auspices of the Computer-aided Acquisition and Logistics Support (CALS) Industry Steering Committee to determine the best utilization of product data description standards for electronic configuration items in the near term. Appendix A contains a brief outline of the CALS Program. The study group's objective was to determine the most advantageous mix of existing standards for application in specifying digital delivery of product data items in support of weapon system development and support contracts. The evaluation was accomplished by means of a product data requirements matrix in which types of data required by the government throughout the development process were mapped against the applicability of the various standards. A delphi approach, in which users of all of the standards participated, was used to determine applicability.
2016-06-16
Standard
EIAIS648
This standard establishes general techniques for use in the measurement and determination of the electromagnetic emission and susceptibility characteristics of electronic, electrical, and electromechanical equipment and subsystems.
2016-06-16
Standard
EQB1
Scope is unavailable.
2016-06-15
Technical Paper
2016-01-1805
Florian Zenger, Clemens Junger, Manfred Kaltenbacher, Stefan Becker
Abstract A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
2016-06-15
Technical Paper
2016-01-1807
Olga Roditcheva, Lennart Carl Lofdahl, Simone Sebben, Pär Harling cEng, Holger Bernhardsson
Abstract This paper presents an experimental study of aeroacoustical sound sources generated by the turbulent flow around the side mirror of a Volvo V70. Measurements were carried out at the Volvo Cars aerodynamical wind tunnel (PVT) and at the aeroacoustical wind tunnel of Stuttgart University (FKFS). Several different measurement techniques were applied in both tunnels and the results were compared to each other. The configurations considered here were: side mirror with a cord and without the cord. The results discussed in this paper include intensity probe measurements in the flow around the side mirror, sound source localization with beamforming technique using a three-dimensional spherical array as well as standard measurements inside the car with an artificial head. This experimental study focused on understanding the differences between testing at the PVT and FKFS.
2016-06-15
Technical Paper
2016-01-1783
Oliver Engler
Mercedes-AMG GmbH specializes in unique, high-performance vehicles. The image of AMG as the successful performance brand of Mercedes-Benz is reflected in its impressive successes in the world of motorsport and its unique vehicles. One of these vehicles is the SLS AMG Coupé Electric Drive. After an elaborate series of tests as well as numerous test drives, we have created the SLS eSound which captures the exceptional dynamism of this unique super sports car with electric drive. Starting with a characteristic start-up sound, which rings out on pressing the "Power" button on the AMG DRIVE UNIT, the occupants can experience a tailor-made driving sound for each driving situation: incredibly dynamic when accelerating, subdued when cruising and as equally characteristic during recuperation. The sound is not only dependent on road speed, engine speed and load conditions, but also reflects the driving situation and the vehicle's operating state with a suitable driving noise.
2016-06-15
Technical Paper
2016-01-1835
Albert Albers, Fabian Schille, Matthias Behrendt
Abstract In terms of customer requirements, driving comfort is an important evaluation criterion. Regarding hybrid electric vehicles (HEVs), maneuver-based measurements are necessary to analyze this comfort characteristic [1]. Such measurements can be performed on acoustic roller test benches, yielding time efficient and reproducible results. Due to full hybrid vehicles’ various operation modes, new noise and vibration phenomena can occur. The Noise Vibration Harshness (NVH) performance of such vehicles can be influenced by transient powertrain vibrations e.g. by the starting and stopping of the internal combustion engine in different driving conditions. The paper at hand shows a methodical procedure to measure and analyze the NVH of HEVs in different driving conditions.
2016-06-15
Technical Paper
2016-01-1848
Jean-Loup Christen, Mohamed Ichchou, Olivier Bareille, Bernard Troclet
Abstract The problem of noise transmission through a structure into a cavity appears in many practical applications, especially in the automotive, aeronautic and space industries. In the mean time, there is a trend towards an increasing use of composite materials to reduce the weight of the structures. Since these materials usually offer poor sound insulation properties, it is necessary to add noise control treatments. They usually involve poroelastic materials, such as foams or mineral wools, whose behaviour depends on many parameters. Some of these parameters may vary in rather broad ranges, either because of measurement uncertainties or because their values have not been fixed yet in the design process. In order to efficiently design sound protections, performing a sensitivity analysis can be interesting to identify which parameters have the most influence on the relevant vibroacoustic indicators and concentrate the design effort on them.
2016-06-15
Journal Article
2016-01-1827
Giorgio Bartolozzi, Marco Danti, Andrea Camia, Davide Vige
Abstract The time to market in the automotive industry is constantly decreasing pushing the carmaker companies to increase the efforts in numerical simulations and to decrease the number of prototypes. In the NVH field, this time constraint reflects in moving the well-established finite element simulations towards the so called “full-vehicle simulations”. Specifically, the CAE techniques should be able to predict the complete behavior of the vehicles in mission conditions, so to reproduce some usual tests, such as the “coast down” test on different roads. The aim of this paper is to present a methodology to improve rolling noise simulations exploiting an integrated full-vehicle approach. An accurate modeling of all the subsystems is needed, with particular attention to the wheels and the suspension systems. Therefore, the paper firstly covers the modeling approach used to obtain the FE models of tires and suspension system.
2016-06-14
WIP Standard
AMS3050
This is a copy of Mil-PRF-907F with excluded materials
2016-06-14
Standard
J1859_201606
This SAE Recommended Practice establishes uniform test procedures for determining input-output characteristics for those pilot-operated and mechanically actuated, modulating-type valves and through-type valves used in the service brake control system.
2016-06-13
WIP Standard
AMS3050/1
Scope. This specification covers anti-seize compound for use on threads of steel nuts, studs, bolts and other mating surfaces, including those of superheated steam installations, at temperatures up to 1050 degrees Fahrenheit (F) (566 degrees Celsius (C)).
2016-06-10
WIP Standard
J2087
This SAE Standard provides test procedures, requirements, and guidelines for a daytime running light (DRL) function.
2016-06-09
Standard
ARP598D
This SAE Aerospace Recommended Practice (ARP) defines the materials, apparatus and procedure for sizing and counting of particulate contamination, 5 μm or greater, in hydraulic fluid samples by membrane filtration iwth microscopic counting. It is capable of counting particulate matter in samples withdrawn from fluid power systems as identified by the 12 classes of SAE AS 4059 or NAS 1638 and projected beyond these for the five standard ranges specified and can thus serve as the primary document to determine acceptability. It is also capable of revealing but not measuring evidence of abnormal amount of water, other fluids, fine particulate and other materials, especially fibers and metals. It is applicable to all military, civil, space vehicles and test equipment.
2016-06-08
WIP Standard
AS20708/17B
No Scope Available
2016-06-08
WIP Standard
AS20708/22B
No Scope Available
2016-06-08
WIP Standard
AS20708/16B
No Scope Available
2016-06-08
WIP Standard
AS20708/15B
No Scope Available
2016-06-08
WIP Standard
AS20708/25B
This specification covers the detail requirements for control transformer synchro, type 16CTB4b, 90 volt, 400 cycle.
2016-06-07
WIP Standard
AIR6908
This document provides informational background, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and acceptance criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP 6330 defines multiple test methods uses to assess the effect of seat back mounted IFE monitor changes on head blunt trauma.
Viewing 61 to 90 of 24160

Filter