Display:

Results

Viewing 61 to 90 of 24212
2016-08-16
WIP Standard
AS85049/138B
Scope unavailable.
2016-08-16
WIP Standard
AS4211E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4220D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4210E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4224D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4807D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications. Correct the “V” dimension for size 10.
2016-08-16
WIP Standard
AS4221D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5002D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications..
2016-08-16
WIP Standard
AS5003D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4809D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5004D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-15
Article
The MicReD Power Tester 600A from Mentor Graphics Corp. tests electric and hybrid vehicle (EV/HEV) power electronics reliability during power cycling.
2016-08-14
Article
Using simulators for RDE testing is a new aspect for the technology, experts say.
2016-08-12
Article
Anritsu Co. (Richardson, TX) introduces Cellular Module Test Application (CMTA) software for its Signaling Testers MD8475A/B, which provides test cases to simplify testing chipsets and automotive-related telematics modules used in connected car designs and implementation.
2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
2016-08-12
Standard
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
2016-08-10
WIP Standard
AIR6211A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with a relative ice penetration capacity of runway deicing/anti-icing chemicals, by measuring the ice penetration as a function of time. Such runway deicing/anti-icing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice penetration capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
2016-08-10
WIP Standard
AIR6170A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with relative ice melting capacity of runway deicing chemicals, by measuring the amount of ice melted as a function of time. Such runway deicing chemicals are often also used on taxiways. This test method does not quantitatively measure the theoretical or extended time ice melting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
2016-08-10
WIP Standard
AIR6172A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with relative ice undercutting capacity of runway deicing chemicals, by measuring the area of ice undercut pattern as a function of time. Such runway deicing chemicals are often also used on taxiways.
2016-08-09
Standard
J45_201608
This SAE Recommended Practice establishes a uniform procedure for the level surface testing of hand-operated brake systems on recreational noncompetitive snowmobiles.
2016-08-08
Article
The dangers of faulty car airbags recently have become all too clear. The product-liability issues associated with airbags and the largest, most costly automotive recall in history make it essential to characterize them thermally at high speeds and with high levels of sensitivity and accuracy.
2016-08-04
Standard
J2869_201608
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics - of Failure analysis. In addition the report describes the process used to validate the computer simulation models.
2016-08-03
Standard
J2517_201608
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/ (volt/volt) or mm/ (mvolt/volt)).
2016-08-02
Standard
J1324_201608
This SAE Recommended Practice provides test methods for determining the characteristics of acoustical and thermal materials. Where applicable, methods of test developed by SAE and ASTM have been referenced.
2016-08-02
Standard
J2413_201608
1.1 This Recommended Practice is for use by contractual parties to verify new xenon arc test apparatus ability to perform SAE J1885, J1960, J2412, J2527, or other as specified. 1.2 This Protocol defines the process for analysis of performance capabilities of candidate xenon arc test apparatus for comparison to current xenon arc test apparatus being utilized by the industry. This will require documentation of the candidate apparatus to: a. Produce the exposure environments as specified in the test method. b. Produce the required degradation in the standard reference material(s) in the specified time frame. c. Produce satisfactory repeatable and reproducible exposure results. d. Produce satisfactory uniform results throughout the specimen exposure region of the test chamber. e. Produce similar degradation in the benchmark test specimens, as agreed upon by contractual parties.
2016-08-01
Standard
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: - Current probe - Line Impedance Stabilization Network (LISN) - Directional coupler - Attenuator - Cable loss - Low noise preamplifier - Rod antenna base - Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
2016-08-01
Magazine
Seeing the Light Achieving Full-Color, Day or Night Readability for Flat-Panel Displays Multiple Node Networking Using PCIe Interconnects PCI Express (PCIe) interconnects, and how they can be used to support multiple node low latency data transfers over copper or optical cables, is gaining momentum in embedded computing solutions. Zero-Emissions Electric Aircraft Theory vs Reality Analyzing Radar Signals With Demodulation Combining Software and Hardware for Highly Specialized Multichannel Spectrum Monitoring Advanced Thermal Management Solutions Thermoelectric Cooling Thermal Ground Planes Thermal Management of Laser Diodes The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer Process Approach to Determining Quality Inspection Deployment Experimental Setup to Assess Blast and Penetration-Induced Secondary Debris in a Military Operations in Urban Terrain (MOUT) Environment Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements
2016-07-31
Article
Delphi Automotive on August 1 announced an extensive autonomous-vehicle pilot program in Singapore, aimed at demonstrating cloud-based fully automated mobility on demand (AMoD) capability “at the [SAE] Level 4 performance level” by late 2019.
2016-07-31
Article
Made of steel and aluminum, NASA's Airvolt test stand was designed and fabricated to help researchers anticipate system integration challenges and verify and validate electric propulsion components.
2016-07-27
Standard
J1802/1_201607
This SAE Recommended Practice contains the reference information for SAE J1802.
Viewing 61 to 90 of 24212

Filter