Sponsored Content
Display:

Results

Viewing 1 to 30 of 23516
2015-06-15
Technical Paper
2015-01-2128
Enrico Bellussi
This paper describes the AgustaWestland past and present experience in the use of US Army HISS flight test results in support to the civil ice clearance for rotorcrafts. The US Army HISS is a CH47D Chinook fitted with a spray bar system providing a cloud for in flight icing evaluation with large part of the rotor (or the fuselage) of the rotorcraft immersed during the flight. The HISS allows to have flight data with stable and partially selectable ice parameters for prolonged flight time, conditions extremely difficult to encounter during natural ice flights. AgustaWestland obtained for AW139 the clearance for flight into known icing conditions (FIPS) by EASA, FAA and TCCA in 2010 and by IAC in 2011. AW139 also obtained the clearance for flight into limited ice conditions (LIPS) by EASA in 2013. In both cases the results of the US Army HISS artificial icing trials have been successfully used to support the certification process.
2015-06-15
Technical Paper
2015-01-2144
James MacLeod, Michael Clarke, Doug Marsh
The GLACIER Icing Facility – Lessons Learnt in the first Five Years of Operation J.D. MacLeod M. Clarke National Research Council of Canada Rolls-Royce plc Gas Turbine Laboratory Civil Aerospace Ottawa, ON Derby, UK Abstract The Global Aerospace Centre for Icing and Environmental Research Inc. (GLACIER) facility is located in Thompson, Manitoba, Canada. This facility provides icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. This globally unique outdoor engine test and certification facility was officially opened back in 2010. The prime purpose of this facility is for icing certification of aero gas turbines. The facility provides the aviation industry with the required environmental conditions (by virtue of its location), and the capability to meet the growing demands for icing certifications and other adverse cold weather conditions.
2015-06-15
Technical Paper
2015-01-2348
Richard Kolano
This paper presents the results of a study to reduce the background noise level within a large Quiet Room built as part of the original building construction circa 1990. This room is located adjacent to other laboratory testing environments and below a mechanical mezzanine which houses an extensive array of mechanical and electrical equipment including banks of low-temperature chiller compressors, air handling units, and electrical switchgear that serves the entire building complex. This equipment was installed atop the concrete mezzanine floor deck without provisions for isolating vibration. As a result, structure borne noise from that equipment travels through the floor, radiates from the underside of the floor deck, and intrudes into the Quiet Room below. This causes the background noise level within the Quiet Room to be too high for conducting low sound level measurements and studies on vehicles brought into the Quiet Room.
2015-06-15
Technical Paper
2015-01-2279
Giovanni Rinaldi, Chris Moon, Bret Engels
A unique Matlab-based coded engineering software tool (Time-Frequency Analyzer Core) was developed that allows users to process acquired time data to help in identifying sources and paths of noise and vibration (in the experience of the authors). The Time-Frequency Analyzer Core (TFAC) software does not replace commercial off the shelf software/hardware NV specific tools such as modal analysis, ODS, acoustic mapping, order tracking, etc., rather it aims at providing basic, yet powerful data inspection and comparison techniques in a single software tool that facilitate drawing conclusions and identifying most effective next steps. The features and advantages of using this software tool will be explained, along with a description of its application to a few different cases (automotive and off highway/agricultural).
2015-06-15
Technical Paper
2015-01-2278
Rohit Ravindran, Debajit Das, Sivaraman P, Gyan Arora
Torsional vibration is a common phenomenon occurring in power driven mechanical systems, like automobiles and commercial vehicles. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertains has become important. In this context accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
2015-06-15
Technical Paper
2015-01-2280
Bernd Philippen, Roland Sottek
Transfer Path Analysis and Synthesis is a widely-used troubleshooting and engineering method in the development process of a car. An engine TPA model should include the engine mounts because they are important elements of the structure-borne paths from the engine to the driver’s ears. This allows identifying if the structure, the sound radiation or the mount is a weak point of the transmission. A mount can be characterized, e. g., by a mount attenuation function, a four-pole model, or a simple parametric mount model. If the mount characteristics are known, the influence of a different mount on the structure-borne sound can be virtually predicted without a real modification. The mount characteristics could be determined on special test rigs but the transferability to the real situation is often questionable because the same boundary conditions on the test rig and in the car are difficult to guarantee.
2015-06-15
Technical Paper
2015-01-2282
Roland Sottek, Wade Bray
For many years in vehicle and other product noise assessments, tonality measurement procedures such as the Tone-to-Noise Ratio, Prominence Ratio and DIN 45681 Tonality have been available to quantify the audibility of prominent tones. Especially through the recent past as product sound pressure levels have become lower, disagreements between perceptions and measurements have increased across a wide range of product categories including automotive, Information Technology and residential products. One factor is that tonality perceptions are caused by spectrally-elevated noise bands of various widths and slopes as well as by pure tones, and usually escape measure in extant tools. Near-superpositions of discrete tones and elevated narrow noise bands are increasingly found in low-level technical sounds. Existing pure-tone methodologies tend to misrecognize an elevated noise band as general masking lowering the audibility of a tone in the measured vicinity, whereas perceptually they add.
2015-06-15
Technical Paper
2015-01-2284
Chris Hocking, Simon Antonov, Arsham Shahlari
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
2015-06-15
Technical Paper
2015-01-2347
James A. Mynderse, Alexander Sandstrom, Zhaohui Sun
Mechanical engineering students at Lawrence Technological University (Lawrence Tech) must complete a capstone project, some of which are industry-sponsored projects (ISPs). American Axle & Manufacturing Inc. (AAM) partnered with LTU to provide a senior design experience in NVH through a proposed improvement to the AAM driveline dynamometer. AAM proposed that students design, develop, and fabricate a decoupling mechanism that minimizes the vibration disturbances transmitted from the driver shaft to the driven shaft. This work describes the LTU-AAM partnership, the design problem and the completed decoupler mechanism with experimental validation. The AAM driveline dynamometer provides immense value for experimental validation of product NVH performances. It has been intensively used to evaluate product design robustness in terms of build variations, mileage accumulation, and temperature sensitivity.
2015-06-15
Technical Paper
2015-01-2346
Balakumar Swaminathan
From a facility perspective, engine test cells are rarely evaluated for their vibration levels in their functional configuration. When complicated dynamic systems such as an internal combustion engine and a dynamometer are coupled together using driveshafts and coupling components, the overall system behavior is significantly different from that of the individual sub-systems. This paper details an instance where system level experimental testing and finite element analysis methods were used to mitigate high vibration levels in an engine test cell. Modal and operational test data were taken to establish baseline vibration levels at a diesel engine test cell during commissioning. Measurements were taken on all major sub-systems such as the engine assembly, dynamometer assembly, intermediate driveshaft bearing pedestal and driveshaft components.
2015-06-15
Technical Paper
2015-01-2156
Michael Oliver
The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Center’s Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an uncommanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in PSL for this testing. The data generated during this testing contained three subsets: known event conditions, altitude scaling conditions and a design of experiment (DOE) data set. The key roll back indicating parameter was found to be the reduction of the measured load parameter, the average of two measured load cells mounted on the thrust stand.
2015-06-15
Technical Paper
2015-01-2106
Mark Ray, Kaare Anderson
Cloud phase discrimination, with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from Appendix C conditions. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths infers an effective droplet size. The OID is designed to be flush-mounted with the aircraft skin and to sample the air stream beyond the boundary layer of the aircraft.
2015-06-15
Technical Paper
2015-01-2142
Colin Hatch, Roger Gent, Richard Moser
Summary Initial results from a hybrid electro-thermal electro-mechanical simulation (HETEMS) analysis tool are presented and compared to data measured during a dedicated icing trial. Temperatures and ice shed prediction data are compared with the data measured on a full size wing tested in the CIRA Icing Wind Tunnel (IWT) Additional Test Section (ATS). Background The demand for low power ice protection systems was one of the components of the EU Clean Sky initiative [1]. Under Clean Sky a research programme HETEMS looked at the development of a tool to analyse electro-thermal (ET) and electro-mechanical (EM) ice protection systems (IPS). The tool was intended to analyse independent ET and EM systems or a hybrid system using both technologies combined. The aims and scope of the tool are presented in [2]. The HETEMS software was developed around open source tools for the aerodynamic analysis [3] and mechanical failure analysis [4] in conjunction with in-house software.
2015-06-15
Technical Paper
2015-01-2155
Tadas P. Bartkus, Peter Struk, Jen-Ching Tsao
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. This model, written in MATLAB, is based on fundamental conservation laws and empirical correlations. Due to numerous power-loss events in aircraft engines, potential ice accretion within the engine due to the ingestion of ice crystals is being investigated. To better understand this phenomenon and determining the physical mechanism of engine ice accretion, fundamental tests have been collaboratively conducted by NASA Glenn Research Center and the National Research Council of Canada (NRC).
2015-06-15
Technical Paper
2015-01-2110
Jozef Brzeczek, Janusz Pietruszka, Robert J. Flemming, Ben C. Bernstein
The PZL M28 05 airplane is an unpressurized twin-engine high-wing strut-braced monoplane of all-metal structure, with twin vertical tails and a tricycle non-retractable landing gear. It is certified to European Aviation Safety Agency (EASA) and Federal Aviation Administration (FAA) requirements. Airplane is certified to flight into known icing conditions in accordance with 14 CFR 23.1419 requirements, including flight in the icing conditions of Appendix C of 14 CFR 25. The PZL M28 05 airplane has characteristics that include short takeoff and landing (STOL) capability, high useful load, mission versatility and easy access through the rear cargo door. Depending on the equipment installed, the airplane can be operated with up to 19 passengers, as a cargo transport, in a mixed configuration, or in patrol version. The M28 is certificated in the Part 23 commuter category. The M28 05 maximum take off gross weight is 7500 kg (16534 lb) and the maximum operational airspeed (VMO) is 192 KIAS.
2015-06-15
Technical Paper
2015-01-2111
Marie-Laure Toulouse, Richard Lewis
The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350 XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests have been carried out in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS25.1419.
2015-06-15
Technical Paper
2015-01-2118
Sergey Alekseyenko, Michael Sinapius, Martin Schulz, Oleksandr Prykhodko
In spite of wide theoretical and experimental studies of icing problem that have been held up to recent times, nevertheless, the most dangerous flights regimes as in the presence of supercooled large droplets or in supercooled rain remain studied not enough. Also the range of parameters that corresponds to the exploitation modes of aircrafts with relatively small heights and speeds of flight like airplanes of small aviation, helicopters, UAV etc. because of the complexity of the icing processes are still not covered. The aim of this work is to answer the next question: which an actual process of interaction of supercooled large water droplets with growing ice surface at small speeds of flight and which physics of falling moisture freezing process on the icing surface is. Thus, the work presents the results of experiments conducted in order to obtain the photographic data on how the interaction between the supercooled water droplets and the icing aerodynamic surface occurs.
2015-06-15
Technical Paper
2015-01-2143
Christian Mendig
In the project SuLaDI (Super Large Droplet Icing) research about the icing of airfoils through super large and super cooled droplets is done at the Institute of Composite Structures and Adaptive Systems (German Aerospace Center) and at the institute of Adaptronics and Function Integration (Technische Universität Braunschweig). In the framework of the project a deicing facility was built. It consists of a cooling chamber and a wind tunnel of the Eiffel-type therein. The icing of specimen takes place in the test chamber of the wind tunnel at temperatures below 0 °C. Between the flow straightener and the contraction section a spray system is built in, which sprays water droplets into the wind tunnel. The droplets are accelerated by the airstream and supercool on the way to the specimen. That means they cool down below the freezing point temperature, but they stay fluid. When hitting the specimen they freeze on it to rime ice, clear ice or mixed ice.
2015-06-15
Technical Paper
2015-01-2281
Shrirang Deshpande, Randall Allemang
Spectral maps and order tracks are tools which are susceptible to improper sensor location on rotating machinery and to measurement noise. On a complex/large rotating system, the major behavior in a particular direction cannot be observed by using standard digital signal processing averaging techniques on different sensor outputs. Also, measurement noise cannot be reduced by applying averaging - due to the slew rate of the system. A newly developed technique tested on experimental data, is presented which uses singular value decomposition (SVD) as its basis to improve the observability of rotating systems. By using data acquired from multiple accelerometers on a machine, singular values – obtained from a SVD of the cross-power matrix at each 2-D point in the frequency-RPM domain – can be plotted in a color-map format similar to a RPM spectral map.
2015-06-15
Technical Paper
2015-01-2125
Dan Fuleki, Jennifer L.Y. Chalmers, Brian Galeote
Ice crystal size has been shown to have a significant impact on the ice accretion phenomenon and is therefore a key variable to control and measure in a test environment. Traditional techniques and equipment used to measure particle size and morphology in the atmosphere are not easily utilized in an icing wind tunnel and in many cases, have poor performance with irregular shaped, solid, non-transparent particles. To overcome these limitations, a high magnification, non-intrusive shadowgraphy technique has been implemented at the National Research Council of Canada to measure airborne water droplet or ice particle size distributions. This system is based on a LaVision ParticleMaster platform which produces diffused laser light of uniform intensity, pulsed into a high resolution camera through a long distance microscope lens. The short duration pulses (9 ns) can produce sharp images of fast moving particles.
2015-06-15
Technical Paper
2015-01-2134
Tom Currie, Dan Fuleki
There is significant recent evidence that ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially producing a loss of performance, rollback, combustor flameout, compressor damage, etc. Several studies of this ice crystal icing (ICI) phenomenon have been conducted in the past 5 years using the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC), which includes an icing wind tunnel capable at operating at Mach numbers (M), total pressures (po) and temperatures (To) pertinent to ICI. Humidity can also be controlled and ice particles are generated with a grinder. The ice particles are entrained in a jet of sub-freezing air blowing into the tunnel inlet. Warm air from the altitude cell also enters the tunnel, where it mixes with the cold ice-laden jet, increasing the wet-bulb temperature (Twb) and inducing particle melting.
2015-06-15
Technical Paper
2015-01-2107
Tom Currie, Dan Fuleki, Craig Davison
There is significant recent evidence that ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially producing a loss of performance, rollback, combustor flameout, compressor damage, etc. Several studies of this ice crystal icing (ICI) phenomenon have been conducted in the past 5 years using the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC), which includes an icing wind tunnel capable at operating at Mach numbers (M), total pressures (po) and temperatures (To) pertinent to ICI. Humidity can also be controlled and ice particles are generated with a grinder. The ice particles are entrained in a jet of sub-freezing air blowing into the tunnel inlet. Warm air from the altitude cell also enters the tunnel, where it mixes with the cold ice-laden jet, increasing the wet-bulb temperature (Twb) and inducing particle melting.
2015-06-15
Technical Paper
2015-01-2116
Peter Struk, Tadas Bartkus, Jen-Ching Tsao, Tom Currie, Dan Fuleki
This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada’s Research Altitude Test Facility during 2012. Due to numerous engine power-loss events associated with high-altitude convective weather, potential ice accretion within an engine due to ice-crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process. While the 2012 experiments had multiple objectives such as cloud characterization and the evaluation of imaging techniques, several tests were dedicated to observe ice accretions using both a NACA 0012 and a wedge-shaped airfoil.
2015-06-15
Technical Paper
2015-01-2147
Sandra Turner, Jean-Marc Gaubert, Remy Gallois, Thibault Dacla, Ingrid Mullie, Aurelien Bourdon, Fabien Dezitter, Alice Grandin, Alain Protat, Rodney Potts, Alfons Schwarzenboeck, J. Walter Strapp
The PLANET (PLAne-NETwork) System was used for real-time satellite data transmission during the HAIC/HIWC Darwin field Campaign (January to March 2014). The basic system was initially providing aircraft tracking, chat and weather text messages (METAR, TAF, NOTAM, etc.) in a standalone application. In the frame of the HAIC (High Altitude Ice Crystals) project, many improvements were made in order to fulfill requirements of the on-board and ground science teams. The aim of this paper is to present the main improvements of the PLANET System that were implemented for the Darwin field campaign. The goal of the flight tests for high IWC characterization were to collect cloud data in deep convective clouds, provide 99th percentile total water content statistics and other relevant parameters of such clouds as a function of distance scale to industry and regulators.
2015-04-14
Journal Article
2015-01-1167
Michele De Gennaro, Elena Paffumi, Giorgio Martini, Urbano Manfredi, Stefano Vianelli, Fernando Ortenzi, Antonino Genovese
The experimental measurement of the energy consumption and efficiency of Battery Electric Vehicles (BEVs) are key topics to determine their usability and performance in real-world conditions. This paper aims to present the results of a test campaign carried out on a BEV, representative of the most common technology available today on the market. The vehicle is a 5-seat car, equipped with an 80 kW synchronous electric motor powered by a 24 kWh Li-Ion battery. The description and discussion of the experimental results is split into 2 parts: Part 1 focuses on laboratory tests, whereas Part 2 focuses on the on-road tests. As far as the laboratory tests are concerned, the vehicle has been tested over three different driving cycles (i.e. NEDC, WLTC and WMTC) at two different ambient temperatures (namely +25 ºC and -7 ºC), with and without the use of the cabin heating, ventilation and air-conditioning system.
2015-04-14
Technical Paper
2015-01-0171
Paul Liu, Abhijit Bansal, James C. McKeever
Abstract Automated software testing for both hardware and software components is one of the ways industry is gaining efficiency in testing. A standard based approach can help in reducing the dependency on one particular tool chain, reduce re-training of engineers, reducing development time and increase collaboration between supplier and OEM's. Tula's Dynamic Skip Fire (DSF) technology achieves fuel efficiency by activating only the required cylinders required to achieve desired torque. Validation of the DSF algorithms requires reading of the crank, cam, spark, fuel injector, and intake and exhaust actuator positions on an individual cylinder firing opportunity. Decisions made on a cylinder by cylinder basis can be validated. The testing architecture at its core is based on the ASAM Hardware in the loop (HIL) API standard. Following the HIL-API standard gives the flexibility of choosing the best in class measurement hardware and test case management tools.
2015-04-14
Technical Paper
2015-01-0173
Stephen Barrett, Maximilien Bouchez
Abstract Engine ECU testing requires sophisticated sensor simulation and event capture equipment. FPGAs are the ideal devices to address these requirements. Their high performance and high flexibility are perfectly suited to the rapidly changing test needs of today's advanced ECUs. FPGAs offer significant advantages such as parallel processing, design scalability, ultra-fast pin-to-pin response time, design portability, and lifetime upgradability. All of these benefits are highly valuable when validating constantly bigger embedded software in shorter duration. This paper discusses the collaboration between Valeo and NI to define, implement, and deploy a graphical, open-source, FPGA-based engine simulation library for ECU verification.
2015-04-14
Technical Paper
2015-01-0591
Karan R. Khanse, Eric Pierce, Michael Ng, Saied Taheri
Abstract Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
2015-04-14
Technical Paper
2015-01-0702
Bita Ghaffari, Jonathan Dekam, Kevin Haddix, Kimberly Lazarz, Sergey Titov, Roman Maev
Abstract Adhesive bonding technology has gained ever-increasing significance in automotive industry, especially with the growing use of aluminum (Al) alloy body structures. The variability in thicknesses of the metal and adhesive layers, as well as in joint geometry, of automotive components has presented challenges in nondestructive evaluation of adhesive joints. Though these challenges were recently overcome for steel-adhesive joints using an ultrasonic pulse-echo technique, the difference in acoustic impedances of steel and Al leads to a lack of robustness in utilizing the same algorithm for Al-adhesive joints. Here, we present the results from using a modified version of this technique to inspect Al-adhesive joints in both laboratory and production environments. A 15-MHz, 52-pixel, 10 mm × 10 mm matrix array of ultrasonic transducers was used to obtain ultrasonic pulse echoes from joint interfaces, analysis of which produced C-scan images of the adhesive bead.
2015-04-14
Technical Paper
2015-01-1018
Ryoko Sanui, Katsunori Hanamura
Surface pores that are open to the inlet channel below the surface play a particularly important role in the filtration of particulate matter (i.e., soot) inside the walls of a diesel particulate filter (DPF); they are closely related to the pressure drop and filtration efficiency through the DPF as well as the performance of the regeneration process. In this study, a scanning electron microscope (SEM) was used to dynamically visualize the soot deposition process at the particle scale as “time-lapse” images corresponding to the different increases in the pressure drop at each time step. The soot was first trapped at the deepest areas of the surface pores because the porous channels in this area were constricted by silicon carbide grains; soot dendrite structures were observed to grow and finally cause obstructions here.
Viewing 1 to 30 of 23516

Filter