Criteria

Text:
Display:

Results

Viewing 1 to 30 of 15370
2015-06-15
Technical Paper
2015-01-2134
Tom Currie, Dan Fuleki
There is significant recent evidence that ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially producing a loss of performance, rollback, combustor flameout, compressor damage, etc. Several studies of this ice crystal icing (ICI) phenomenon have been conducted in the past 5 years using the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC), which includes an icing wind tunnel capable at operating at Mach numbers (M), total pressures (po) and temperatures (To) pertinent to ICI. Humidity can also be controlled and ice particles are generated with a grinder. The ice particles are entrained in a jet of sub-freezing air blowing into the tunnel inlet. Warm air from the altitude cell also enters the tunnel, where it mixes with the cold ice-laden jet, increasing the wet-bulb temperature (Twb) and inducing particle melting.
2015-06-15
Technical Paper
2015-01-2144
James MacLeod, Michael Clarke, Doug Marsh
The GLACIER Icing Facility – Lessons Learnt in the first Five Years of Operation J.D. MacLeod M. Clarke National Research Council of Canada Rolls-Royce plc Gas Turbine Laboratory Civil Aerospace Ottawa, ON Derby, UK Abstract The Global Aerospace Centre for Icing and Environmental Research Inc. (GLACIER) facility is located in Thompson, Manitoba, Canada. This facility provides icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. This globally unique outdoor engine test and certification facility was officially opened back in 2010. The prime purpose of this facility is for icing certification of aero gas turbines. The facility provides the aviation industry with the required environmental conditions (by virtue of its location), and the capability to meet the growing demands for icing certifications and other adverse cold weather conditions.
2015-06-15
Technical Paper
2015-01-2346
Balakumar Swaminathan
From a facility perspective, engine test cells are rarely evaluated for their vibration levels in their functional configuration. When complicated dynamic systems such as an internal combustion engine and a dynamometer are coupled together using driveshafts and coupling components, the overall system behavior is significantly different from that of the individual sub-systems. This paper details an instance where system level experimental testing and finite element analysis methods were used to mitigate high vibration levels in an engine test cell. Modal and operational test data were taken to establish baseline vibration levels at a diesel engine test cell during commissioning. Measurements were taken on all major sub-systems such as the engine assembly, dynamometer assembly, intermediate driveshaft bearing pedestal and driveshaft components.
2015-06-15
Technical Paper
2015-01-2347
James A. Mynderse, Alexander Sandstrom, Zhaohui Sun
Mechanical engineering students at Lawrence Technological University (Lawrence Tech) must complete a capstone project, some of which are industry-sponsored projects (ISPs). American Axle & Manufacturing Inc. (AAM) partnered with LTU to provide a senior design experience in NVH through a proposed improvement to the AAM driveline dynamometer. AAM proposed that students design, develop, and fabricate a decoupling mechanism that minimizes the vibration disturbances transmitted from the driver shaft to the driven shaft. This work describes the LTU-AAM partnership, the design problem and the completed decoupler mechanism with experimental validation. The AAM driveline dynamometer provides immense value for experimental validation of product NVH performances. It has been intensively used to evaluate product design robustness in terms of build variations, mileage accumulation, and temperature sensitivity.
2015-06-15
Technical Paper
2015-01-2246
Kurt Veggeberg, Mike Denton
This is an overview of the development of a portable, real-time sound camera based on FPGA (Field Programmable Gate Arrays) and digital microphones for noise source identification. The use of the FPGA technology and digital microphones provides increased performance, reduced cost and weight. This provides the capability of making interior noise measurements. Microphone arrays can be a useful tool in identifying noise sources and give designers an image of noise distribution. There are many successful applications of noise source identification systems in use in the automotive industry which will be presented. The beamforming algorithm is a classic and efficient algorithm for signal processing of microphone arrays and is the core of many microphone array systems. High-speed real-time beamforming has not been implemented much in a portable instrument because it requires large computational resources.
2015-06-15
Technical Paper
2015-01-2292
Xiaorui Lu, Junda Ma
Over recent years, NVH refinement of engine is becoming increasingly important in buying decision and can significantly give competitive edge to the vehicle in market place. This paper deals with the development phase of a prototype engine in which a specific testing activity was carried out to improve the overall NVH behavior of the powertrain. In order to explain the optimization process in detail, a case study was described in this paper. First, NVH targets of the engine were set via benchmark tests on existing competitive products. Then series of baseline tests, such as 1M sound pressure level test and noise source identification, were performed on the engine. Test results indicated that an obvious breathing vibration mode exist near the intake manifold, which radiates high level noise. In order to achieve the NVH targets, a correlation validation was performed to find out the main reason that caused the vibration of intake manifold.
2015-06-15
Technical Paper
2015-01-2107
Tom Currie, Dan Fuleki, Craig Davison
Abstract Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
2015-06-15
Technical Paper
2015-01-2105
Darren Glenn Jackson
Aircraft icing has been a focus of the aviation industry for many years. While regulations existed for the certification of aircraft and engine ice protection systems (IPS), no FAA or EASA regulations pertaining to certification of ice detection systems existed for much of this time. Interim policy on ice detection systems has been issued through the form of AC 20-73A as well as FAA Issue Papers and EASA Certification Review Items to deal mainly with Primary Ice Detection Systems. A few years ago, the FAA released an update to 14 CFR 25.1419 through Amendment 25-129 which provided the framework for the usage of ice detection systems on aircraft. As a result of the ATR-72 crash in Roselawn, Indiana due to Supercooled Large Droplets (SLD) along with the Air France Flight 447 accident and numerous engine flame-outs due to ice crystals, both the FAA and EASA have developed new regulations to address these concerns.
2015-06-15
Technical Paper
2015-01-2110
Jozef Brzeczek, Janusz Pietruszka, Robert J. Flemming, Ben C. Bernstein
Abstract In 2014 PZL Mielec obtained an EASA Type Certificate extension for the PZL M28 05 airplane for flight into icing conditions and this has been validated by the FAA. Thus, a project that lasted four years was finished successfully. During this period, activities consisted of icing analyses, wind tunnel tests in the NASA Glenn Research Center Icing Research Tunnel, and natural icing flight tests, artificial icing flight tests, flight tests with simulated ice shapes, and calibration tests. Flights in measured natural icing conditions began during the spring of 2009 and certification flight tests were performed in 2012. The natural icing test flights, apart one flight in the USA, were performed in Poland in the Mielec area. The final test campaign can be divided into two phases: (1) March -April flight tests campaign; and (2) November - December flight test campaign, the latter after introducing some design changes in airframe ice protection system.
2015-06-15
Technical Paper
2015-01-2111
Marie-Laure Toulouse, Richard Lewis
Abstract The intent of this paper is to provide a general overview of the main engineering and test activities conducted in order to support A350XWB Ice and Rain Protection Systems certification. Several means of compliance have been used to demonstrate compliance with applicable Certification Basis (CS 25 at Amendment 8 + CS 25.795 at Amendment 9, FAR 25 up to Amendment 129) and Environmental protection requirements. The EASA Type Certificate for the A350XWB was received the 30th September 2014 after 7 years of development and verification that the design performs as required, with five A350XWB test aircraft accumulating more than 2600 flight test hours and over 600 flights. The flight tests were performed in dry air and measured natural icing conditions to demonstrate the performance of all ice and rain protection systems and to support the compliance demonstration with CS 25.1419 and CS25.21g.
2015-06-15
Technical Paper
2015-01-2116
Peter Struk, Tadas Bartkus, Jen-Ching Tsao, Tom Currie, Dan Fuleki
Abstract This paper presents measurements of ice accretion shape and surface temperature from ice-crystal icing experiments conducted jointly by the National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada. The data comes from experiments performed at NRC's Research Altitude Test Facility (RATFac) in 2012. The measurements are intended to help develop models of the ice-crystal icing phenomenon associated with engine ice-crystal icing. Ice accretion tests were conducted using two different airfoil models (a NACA 0012 and wedge) at different velocities, temperatures, and pressures although only a limited set of permutations were tested. The wedge airfoil had several tests during which its surface was actively cooled. The ice accretion measurements included leading-edge thickness for both airfoils. The wedge and one case from the NACA 0012 model also included 2D cross-section profile shapes.
2015-06-15
Technical Paper
2015-01-2118
Sergey Alekseyenko, Michael Sinapius, Martin Schulz, Oleksandr Prykhodko
Abstract The results of experimental investigation of the icing processes of NACA 0015 airfoil are presented. The experiments have been carried out with the help of a high-speed camera at the icing/deicing facility at the Institute of Adaptronic and Functional Integration of the Technical University of Braunschweig. The investigation objective is the study of interaction between supercooled large droplets and the icing airfoil surface as well as physical phenomena occurring during the icing process. Evolution of the initial phase of ice growth process over time is observed, the general structure of ice accretion and its alteration along the airfoil is examined. Experiments have been carried out within a wide temperature range. Photos of the specific moments of the icing process have been analyzed. Splashing events and water movement on the icing surface have been observed.
2015-06-15
Technical Paper
2015-01-2348
Richard Kolano
This paper presents the results of a study to reduce the background noise level within a large Quiet Room built as part of the original building construction circa 1990. This room is located adjacent to other laboratory testing environments and below a mechanical mezzanine which houses an extensive array of mechanical and electrical equipment including banks of low-temperature chiller compressors, air handling units, and electrical switchgear that serves the entire building complex. This equipment was installed atop the concrete mezzanine floor deck without provisions for isolating vibration. As a result, structure borne noise from that equipment travels through the floor, radiates from the underside of the floor deck, and intrudes into the Quiet Room below. This causes the background noise level within the Quiet Room to be too high for conducting low sound level measurements and studies on vehicles brought into the Quiet Room.
2015-06-15
Technical Paper
2015-01-2299
Dhanesh Purekar
In comparison to medium duty and heavy duty diesel engines, NVH development of light duty diesel engines requires significant collaboration with the OEM. Typically, competitive benchmark studies and customer expectations define the NVH targets at the vehicle and subsequently cascaded down at the powertrain level. For engine manufacturing companies like Cummins, it is imperative to work closely with OEM to deliver on the NVH expectations. In certain situations, engine level NVH targets needs to be demonstrated in the OEM or 3rd party acoustic test facility for contract approvals. However, this is a difficult task to accomplish, considering the differences between acoustic test facilities and hardware, instrumentation, etc. In addition, engine itself is a big contributor to the noise variation. This technical paper documents one such case study conducted on a standalone light duty diesel engine in three different acoustic test facilities.
2015-06-15
Technical Paper
2015-01-2130
Melissa Bravin, J. Walter Strapp, Jeanne Mason
Abstract In the last several years, the aviation industry has improved its understanding of jet engine events related to the ingestion of ice crystal particles. Ice crystal icing has caused powerloss and compressor damage events (henceforth referred to as “engine events”) during flights of large transport aircraft, commuter aircraft and business jets. A database has been created at Boeing to aid in analysis and study of these engine events. This paper will examine trends in the engine event database to better understand the weather which is associated with events. The event database will be evaluated for a number of criteria, such as the global location of the event, at what time of day the event occurred, in what season the event occurred, and whether there were local meteorological influences at play. A large proportion of the engine events occur in tropical convection over the ocean.
2015-06-15
Technical Paper
2015-01-2142
Colin Hatch, Roger Gent, Richard Moser
Abstract Low power ice protection systems are an important research area that is highlighted in the EU Clean Sky programme. In this paper an icing wind tunnel test of a full-scale wing incorporating both an electro-thermal and a hybrid electro-thermal electro-mechanical system is described. A description of a software tool to analyse both systems as full 3D models is also given. Preliminary comparisons of test data and prediction are shown both for the electro-thermal system and the hybrid system. Initial comparisons show a reasonable correlation in the main with recommendations for a structure tear-down to identify exact internal transducer locations. Recommendations are also made with regard to undertaking tests to determine a more consistent set of mechanical failure properties of ice. Future work in the development of the tool is also discussed.
2015-06-15
Technical Paper
2015-01-2143
Christian Mendig
Abstract In the project SuLaDI (Supercooled Large Droplet Icing) research about the icing of aerofoils through large and super cooled droplets is done at the Institute of Composite Structures and Adaptive Systems (German Aerospace Center-DLR) and at the Institute of Adaptronics and Function Integration (Technische Universität Braunschweig). In the framework of the project an icing wind tunnel was built. It consists of a cooling chamber and a wind tunnel of the Eiffel-type therein. The icing of model takes place in the test section of the wind tunnel at temperatures below 0 °C. Between the flow straightener and the contraction section a spray system is built in, which sprays water droplets into the wind tunnel. The droplets are accelerated by the airstream and supercool on their way to the model. When hitting the model they freeze on it to rime ice, clear ice or mixed ice. At the model research about a structure integrated ice detection is done.
2015-06-15
Technical Paper
2015-01-2147
Sandra Turner, Jean-Marc Gaubert, Remy Gallois, Thibault Dacla, Ingrid Mullie, Aurelien Bourdon, Fabien Dezitter, Alice Grandin, Alain Protat, Rodney Potts, Alfons Schwarzenboeck, J. Walter Strapp
Abstract The PLANET System was used for real-time satellite data transmission during the HAIC-HIWC Darwin field campaign (January to March 2014). The basic system was initially providing aircraft tracking, chat, weather text messages (METAR, TAF, etc.), and aeronautical information (NOTAMs) in a standalone application. In the framework of the HAIC project, many improvements were made in order to fulfill requirements of the onboard and ground science teams for the field campaign. The aim of this paper is to present the main improvements of the system that were implemented for the Darwin field campaign. New features of the system are related to the hardware component, the communication protocol, weather and tracking display, geomarkers on the map, and image processing and compression before onboard transfer.
2015-06-15
Journal Article
2015-01-2155
Tadas P. Bartkus, Peter Struk, Jen-Ching Tsao
Abstract This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. It has been previously observed that test conditions, most notably temperature and humidity, change when the icing cloud is activated. It is hypothesized that the ice particles and water droplets thermally interact with the flowing air causing the air temperature and humidity to change by the time it reaches the test section. Unlike previous models where the air and particles are uncoupled, this model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
2015-06-15
Journal Article
2015-01-2154
Franck Hervy, Severine Maguis, François Virion, Biagio Esposito, Hugo Pervier
Abstract The A06 test facility designed for combustor testing in altitude has been modified to be converted in an icing facility for probe testing. The objective was to be able to simulate ice crystals conditions at high altitude, high Mach number and low temperature. This facility has been upgraded in several steps extending the median size of the ice crystals produced and the ice water content range. The aero-thermal and icing capabilities have been assessed during commissioning tests. Finally, in order to prepare the calibration of the facility, some measurement techniques for cloud characterization have been selected or developed, especially for cloud uniformity measurement.
2015-06-15
Journal Article
2015-01-2156
Michael Oliver
Abstract The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested.
2015-06-15
Journal Article
2015-01-2106
Mark Ray, Kaare Anderson
Abstract Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size.
2015-06-15
Technical Paper
2015-01-2247
Masao Nagamatsu
The sound localization methods are used for noise source detection of prototype of mechanical products including automobile engines. There are several types of sound localization methods. In middle frequency sound localization around 1kHz, which is most sensitive band for human auditory, these methods have enough resolution in reconstructed images, and are effective to localize the sound source. In high frequency sound localization, the holographic type methods take long time in measurement. To overcome this problem, I have developed the converted method of Nearfield Acoustic Holography (NAH) method, which is one of conventional holographic sound localization method. However, in low frequency sound localization, all methods do not have enough resolution in reconstructed images. I am now developing new sound localization method, Double Nearfield Acoustic Holography (DNAH) method. This method is converted method of conventional Nearfield Acoustic Holography method.
2015-06-15
Journal Article
2015-01-2328
Barbara Neuhierl, Sivapalan Senthooran, Reinier Toppinga, Anke Jäger, Maarten Brink, Timo Lemke, Philippe Moron, Raghu Mutnuri
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of german car manufacturers (Audi, Daimler, Porsche, Volkswagen). It consists of a simplified cabin whose interior can be equipped with either reverberant or partly absorbing walls. To obtain more realistic flow and pressure excitation typical for production vehicles, an a-pillar and a series rear view mirror were attached to the exterior surface. Furthermore the test object contains a glass side window, allowing noise transmission to the interior. Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper.
2015-06-15
Journal Article
2015-01-2189
Michael Krak, Jason Dreyer, Rajendra Singh
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
2015-06-15
Journal Article
2015-01-2285
Arne Nykänen, David Lennström, Roger Johnsson
Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
2015-06-15
Technical Paper
2015-01-2213
John Van Baren
The accumulated damage that a product experiences in the field due to the variety of vibration stresses placed upon it will eventually cause failures in the product. The failure modes resulting from these dynamic stresses can be replicated in the laboratory and correlated to end use environment to validate target reliability requirements. This presentation will discuss which random profile is needed to simulate end use environment, how to combine multiple vibration environments into one, and how to use FDS to accelerate the test.
2015-06-15
Technical Paper
2015-01-2187
Mark A. Gehringer, Keith Thompson
This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a luxury performance vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback . Development challenges addressed included interaction of engine and driveline vibration orders, flexible driveline coupling effects, tachometer positional reference error and vehicle-to-vehicle variation of influence coefficients
2015-06-15
Technical Paper
2015-01-2278
Rohit Ravindran, Debajit Das, Keval Kamani, P Sivaraman, Gyan Arora
Torsional vibration is a characteristic phenomenon of automotive powertrains. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertrains has become important. In this context, accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in-house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
2015-06-15
Technical Paper
2015-01-2125
Dan Fuleki, Jennifer L.Y. Chalmers, Brian Galeote
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Viewing 1 to 30 of 15370