Criteria

Text:
Content:
Display:

Results

Viewing 241 to 270 of 7128
2016-08-16
WIP Standard
AS4809D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5004D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5003D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4211E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4210E
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4224D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4221D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS4220D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications.
2016-08-16
WIP Standard
AS5002D
Remove AS85421 performance specification and leave AS85720 performance specification to provide clarification regarding the QPL and associated pressure applications..
CURRENT
2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
CURRENT
2016-08-12
Standard
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
2016-08-10
WIP Standard
AIR6211A
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with a relative ice penetration capacity of runway deicing/anti-icing chemicals, by measuring the ice penetration as a function of time. Such runway deicing/anti-icing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice penetration capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
CURRENT
2016-08-09
Standard
J45_201608
This SAE Recommended Practice establishes a uniform procedure for the level surface testing of hand-operated brake systems on recreational noncompetitive snowmobiles.
CURRENT
2016-08-04
Standard
J2869_201608
This report details continuing work examining the fatigue life durability of a US Army Trailer. This report describes, through example, a process to evaluate and reduce the experimental data needed for a Mechanical Systems Physics - of Failure analysis. In addition the report describes the process used to validate the computer simulation models.
CURRENT
2016-08-03
Standard
J2517_201608
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/ (volt/volt) or mm/ (mvolt/volt)).
CURRENT
2016-08-02
Standard
J2413_201608
This Recommended Practice is for use by contractual parties to verify new xenon arc test apparatus ability to perform SAE J1885, J1960, J2412, J2527, or other as specified.
CURRENT
2016-08-02
Standard
J1324_201608
This SAE Recommended Practice provides test methods for determining the characteristics of acoustical and thermal materials. Where applicable, methods of test developed by SAE and ASTM have been referenced.
CURRENT
2016-08-01
Standard
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
CURRENT
2016-07-27
Standard
J1802/1_201607
This SAE Recommended Practice contains the reference information for SAE J1802.
CURRENT
2016-07-26
Standard
AIR1794B
This metric SAE Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems.
CURRENT
2016-07-20
Standard
J1409_201607
This SAE Recommended Practice establishes uniform test procedures for air brake systems pneumatic valves with respect to: Input-Output Performance Leakage Characteristics Low Temperature Evaluation Elevated Temperature Evaluation Corrosion Resistance Evaluation Endurance Testing Structural Integrity Vibration Testing
CURRENT
2016-07-19
Standard
ARP5448/3A
This test method outlines a recommended procedure for performing unidirectional load dynamic testing of self-lubricating bearings at room temperature, elevated temperature or sub-zero temperature, dry or contaminated with fluids. The wear data from these tests is to be used for qualification and to establish bearing design criteria.
2016-07-13
WIP Standard
ARP4150A
This SAE Aerospace Recommended Practice (ARP) is intended as a guide in establishing inspection procedures to determine the condition of inservice accumulators. A minimum inspection program is recommended to determine the existence of corrosion and damage. Recommendations are also provided for corrective action if it is determined that the environment is contributing to the deterioration of the surface protection system treatments.
CURRENT
2016-07-01
Standard
J2436_201607
To document test procedures and set-ups that address known failure modes for Accessory Drive automatic tensioners This SAE Standard does not encompass the pulley or pulley bearing. The sample sizes and acceptance criteria should be determined by agreement between the original equipment manufacturer (OEM) and the supplier. The failure modes to be addressed are: Test Factors include: NOTE: The Belt Drive Committee recommends that this spec be run using test parts that are close to the upper and lower specifications for load output and damping (tails testing).
CURRENT
2016-07-01
Standard
J2863_201607
This SAE Standard provides the minimum requirements for Automotive or RV, 7 Position, Self-Draining Trailer Tow Connector Interface. The procedures included within this specification are intended to cover the test methods, design, and performance requirements, of the electrical interface of the 7 position trailer tow connector in low voltage (0 to 20) road vehicle applications.
CURRENT
2016-06-30
Standard
J1095_201606
This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing of wheels for demountable rims and hubs intended for normal highway use on trucks, buses, truck trailers, and multipurpose passenger vehicles. The hubs included have bolt circle diameters from 165.1 to 335.0 mm (6.500 to 13.189 in). It is up to each hub and/or wheel for demountable rims manufacturer to determine what test method, accelerated load factor and cycle life requirements are applicable to obtain satisfactory service life in a given application. When deviations from the procedures recommended herein are made, it is the responsibility of the hub and/or wheel for demountable rims developer to modify other parameters to obtain satisfactory service life.
CURRENT
2016-06-30
Standard
J3069_201606
This SAE Recommended Practice provides test procedures, performance requirements, and design guidelines for adaptive driving beam (ADB) and associated equipment.
CURRENT
2016-06-28
Standard
J2830_201606
This recommended practice describes a process for testing the comprehension of static (i.e., fixed or non-dynamic) symbols for all ground vehicles, for both OEM and aftermarket products. With advancing display technology, it is now possible to display dynamic symbols (e.g., a spinning beach ball to show that a process is ongoing, or a diagram showing energy distribution in hybrid vehicles). Such graphics are outside of the scope of this recommended practice, though extensions of this process may be useful for testing them. However, several symbols which occupy the same space on a display may change state without movement (e.g. play/pause button); these are within the scope of this recommended practice. The process described in this recommended practice includes criteria that are used to identify how well the perceived meaning matches the intended meaning for a representative sample of drivers.
CURRENT
2016-06-28
Standard
J1598_201606
This SAE Recommended Practice is applicable to all liquid-to-gas, liquid-to-liquid, gas-to-gas, and gas-to-liquid heat exchangers used in vehicle and industrial cooling systems. This document outlines the test to determine durability characteristics of the heat exchanger from vibration-induced loading.
Viewing 241 to 270 of 7128