Criteria

Text:
Content:
Display:

Results

Viewing 181 to 210 of 7128
CURRENT
2016-11-12
Standard
ARP5448/5A
This test method provides a procedure for measuring no-load rotational breakaway torque of self-lubricating spherical bearings.
CURRENT
2016-11-12
Standard
ARP5448/1A
This test method outlines the recommended procedure for performing radial limit load and ultimate load tests on low speed airframe and high speed helicopter rotor head bearings.
CURRENT
2016-11-10
Standard
J2318_201611
This procedure provides test performance requirements for service, spring applied parking, and double diaphragm combination air brake actuators with respect to durability, function, and environmental performance when tested in accordance to SAE J1469.
2016-11-09
WIP Standard
AIR6911
The goal of this new Aerospace Information Report is to supplement the content of AS6327™ and provide a reference document for the new Aerospace Standard. This new Aerospace Information Report will serve as a practical resource that offers guidance to the machine operator and Process Engineer for isolating the source(s) of non-repeatability in measured unbalance data. The content will include: • Machine Capability to achieve the specified unbalance tolerances and repeat within those tolerances • Tooling Capability to repeat within the specified unbalance tolerances • Rotor characteristics that may preclude repeating within the required unbalance tolerances.
CURRENT
2016-11-08
Standard
J964_201611
This SAE Recommended Practice describes methods for determining total and specular reflectance for mirrors with flat and curved surfaces and a method for determining diffuse reflectance and haze for mirrors with flat surfaces.
2016-11-07
WIP Standard
AIR7483
This AIR provides information about polymeric materials (Super Absorbent Polymers - SAP) used in Filter Monitors for free water removal, the possibility of migration of such material in to aircraft fuel systems and the potential impact on fuel system operation along with light incidents traceable to the migration of SAP in to the aircraft fuel system are enumerated. The measures taken to minimize SAP migration are also discussed.
2016-11-03
WIP Standard
AIR6805
This document will outline existing best practices in the instrumentation of landing gears for in-service operation (including flight test, operational loads monitoring, etc.).
2016-11-03
WIP Standard
AS39029/90B
No scope available.
2016-11-03
WIP Standard
AS39029/91B
No scope available.
2016-10-31
WIP Standard
ARP7998
This is a recommended practice for an interface to supplier simulations that utilize traditional interprocess communication (IPC) methods of shared memory and semaphore communications. These IPC methods are fairly standard practice in the computer science world, that allow for communication by separate processes running on a computer without any common runtime requirements of each process being run. So 32bit applications can talk with 64 bit applications as well as any other compiler or runtime dependency being needed by the calling program to interface with the called system. This also allows the calling program and the called program to be run on separate CPUs to allow parallel execution of the called program as well as multiple instances of the called program to execute all on separate processors.
CURRENT
2016-10-30
Standard
AS6171/10
This test method provides the capabilities, limitations, and suggested possible applications of TGA as it pertains to the detection of counterfeit electronic components. Additionally, this document outlines requirements associated with the application of TGA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification. If AS6171/10 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/9
This document defines capabilities and limitations of FTIR spectroscopy as it pertains to counterfeit electronic component detection and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of FTIR spectroscopy including: operator training, sample preparation, various sampling techniques, data interpretation, computerized spectral matching including pass/fail criteria, equipment maintenance, and reporting of data. The discussion is primarily aimed at analyses performed in the mid-infrared (IR) from 400 to 4000 wavenumbers; however, many of the concepts are applicable to the near and far IR. If AS6171/9 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/8
To define capabilities and limitations of Raman spectroscopy as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of Raman spectroscopy including: Operator training; Sample preparation; Data interpretation; Computerized spectral matching including pass/fail criteria; Equipment maintenance and; Reporting of data. If AS6171/8 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/6
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/11
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/5
The intent of this document is to define the methodology for suspect parts inspection using radiological inspection. The purpose of radiology for suspect counterfeit part inspection is to detect deliberate misrepresentation of a part, either at the part distributor or original equipment manufacturer (OEM) level. Radiological inspection can also potentially detect unintentional damage to the part resulting from improper removal of part from assemblies, which may include, but not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Radiological inspection of electronics includes film radiography and filmless radiography such as digital radiography (DR), real time radiography (RTR), and computed tomography (CT). Radiology is an important tool used in part verification of microelectronic devices.
CURRENT
2016-10-30
Standard
AS6171/4
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: prevent inclusion of counterfeit parts in the assembly identify defective parts aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
CURRENT
2016-10-30
Standard
AS6171
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer, or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
CURRENT
2016-10-30
Standard
AS6171/1
This document describes an assessment of the effectiveness of a specified test plan used to screen for counterfeit parts. The assessment includes the determination of the types of defects detected using a specified test plan along with the related counterfeit type coverage. The output of this evaluation will produce Counterfeit Defect Coverage (CDC), Counterfeit Type Coverage (CTC), Not-Covered Defects (NCDs), and Under-Covered Defects (UCDs). This information will be supplied to the test laboratory’s customer in both the test report and the Certificate of Quality Conformance (CoQC). This evaluation method does not address the effectiveness of detecting tampered type devices. The Test Evaluation Method also describes an Optimized Test Sequence Selection, in which a test sequence is selected that maximizes the CDC utilizing test cost and time as constraints, for any tier level except the Critical Risk Level. The constraints can be adjusted until the desired CDC is achieved.
CURRENT
2016-10-30
Standard
AS6171/2
This document describes the requirements of the following test methods for counterfeit detection of electronic components: Method A: General External Visual Inspection (EVI), Sample Selection, and Handling Method B: Detailed EVI Method C: Testing for Remarking and Resurfacing Method D: Surface Texture Analysis by SEM
CURRENT
2016-10-30
Standard
AS6171/3
XRF technique for counterfeit detection is applicable to electrical, electronic and electromechanical (EEE) parts as listed in AS6171 General Requirements. In general, the detection technique is meant for use on piece parts prior to assembly on a circuit board or on the parts that are removed from a circuit board. The applicability spans a large swath of active, passive and electromechanical parts. If AS6171/3 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/7
The scope of this document is to: Specify techniques to detect SC parts using electrical testing. Provide various levels of electrical testing that can be used by the User to define test plans for detecting SC parts. Provide minimum requirements for testing laboratories so that User/Requester can determine which test houses have the necessary capabilities. (For example: technical knowledge, equipment, procedures and protocols for performing electrical testing for verification analysis.) Note: User/Requester is defined in AS6171 General Requirements Specify Burn-In and environmental tests. The environmental tests include Temperature Cycling for Active Devices and Thermal Shock for Passive Devices. Seal Tests are described and recommended for hermetic devices. The following terminology is used throughout this document: Shall = is mandatory; Should = is recommended; and Will = is planned (is considered to be part of a standard process).
CURRENT
2016-10-27
Standard
MAP4053A
Applications include specifications, reports, ratings, texts etc., where fluid leakage rates are treated.
2016-10-26
WIP Standard
AS6449C
This document establishes the requirements for a dry film lubricant AS6449 lubricant for use on breathing oxygen system and potable water system components, for a temperature range of -90 to +300 °F. This document also establishes the Non-Destructive Test (NDT) procedures and criteria for coated production parts. This document requires qualified products and product applicators.
CURRENT
2016-10-25
Standard
J2690_201610
This SAE Recommended Practice establishes uniform test procedures for friction based parking brake components used in conjunction with hydraulic service braked vehicles with a gross vehicle weight rating greater than 4500 kg (10 000 lb). The components covered in this document are the primary actuation and the foundation park brake. Various peripheral devices such as application dashboard switches or indicators are not included.
CURRENT
2016-10-25
Standard
AS5900C
This SAE Aerospace Standard (AS) establishes the aerodynamic flow-off requirements and test procedures for AMS1424 Type I and AMS1428 Type II, III and IV fluids used to deice and/or anti-ice aircraft. The objective of this standard is to ensure acceptable aerodynamic characteristics of the deicing/anti-icing fluids as they flow off of aircraft lifting and control surfaces during the takeoff ground acceleration and climb. Aerodynamic acceptance of an aircraft ground deicing/anti-icing fluid is based upon the fluid’s boundary layer displacement thickness (BLDT) on a flat plate, measured after experiencing the free stream velocity time history of a representative aircraft takeoff. Acceptability of the fluid is determined by comparing BLDT measurements of the candidate fluid with a datum established from the values of a reference fluid BLDT and the BLDT over the dry (clean) test plate.
CURRENT
2016-10-21
Standard
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
CURRENT
2016-10-21
Standard
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
2016-10-21
WIP Standard
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
CURRENT
2016-10-21
Standard
AIR4827B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Viewing 181 to 210 of 7128