Display:

Results

Viewing 1 to 30 of 24076
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Han Wu, Chia-Fon Lee, Zhi Ning
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin wang, Xiongcai zou, Zhiming Zhang, Wenlong zhang, Shemin zhang, Tao Chen, Yuhuang cao, Yuanda Chen
In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is in adopted in one three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. The global model include cylinder head, block, turbocharger, and catalyst components.
2017-10-08
Technical Paper
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-09-19
Technical Paper
2017-01-2104
Marc Gatti
Certification of a mono or multicore processor is going to request to demonstrate that we are capable of mastering the determinism of the execution of all the applications which are going to be executed. Regarding the multicore we introduce a level of complexity to be managed regarding the execution of the application in parallel on each of the cores of the multicore processor whatever is the internal architecture of the processor. In an IMA context, in a mono-core processor: • This determinism is insured by the control of the WCET allowing defining a maximal boundary for all the accesses to all the services offered by the Operating System. • The Platform Provider has no information about the applications which are going to be executed. In this condition the computation of a WCET on a multi-core, like it is done currently, will be realized by introducing constraints at the level of the internal functioning of the multi-core processor.
2017-09-17
Technical Paper
2017-01-2501
ByeongUk Jeong, HYOUNG TAE Ryu, Kwang Ki Jung, Chang Jin Kim
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Sucess of doing this properly causes more heat to the disc in the brake system which results in the deformation or scratches on the surface of it and a reduction in the appearance of the product. A study for detailed factors to aggravate this was done as a solution to prevent these form happening. In this paper, we present our work based on experiments to study MPU(Metal Pick Up) of the pad and the scoring(scratching)of the disc. MPU of which the main component is "Fe", is formed through the process of fusing the separated materials from the disc by friction wiht the pad, and by local heat generation to the pad. The occurrence of MPU and the possibility of the disc scoring resulting from this were studied by noting "Fe" which was transferred to the surface of the pad to different extent and degree of segregation according to the roughness of disc.
2017-09-17
Technical Paper
2017-01-2496
Enrico Galvagno, Antonio Tota, Alessandro Vigliani, Mauro Velardocchia
Brake systems represent important components for passenger cars since they are strictly related to vehicle safety: Anti-lock Braking Systems (ABS) and Electronic Stability Control (ESC) are the most well-known examples. The paper is focused on the characterization of the braking hydraulic plant and on the design of a pressure following control strategy. This strategy is aimed at pursuing performances and/or comfort objectives beyond the typical safety task. Caliper pressure dynamics is evaluated through a lumped parameter model which is used to design the controller. The low-level logic (focus of the paper) consists of a Feedforward and Proportional Integral controller. A Hardware In the Loop (HIL) braking test bench is adopted for pressure controller validation by providing some realistic reference pressure histories evaluated by a high-level controller.
2017-09-17
Technical Paper
2017-01-2499
Xianyao Ping, Yuxin Pang, YU TANG
The engine brake is widely used as auxiliary brake device for its continuous brake torque. The engine brake performance is usually determined in the laboratory or proving ground according to relevant standards. The main purpose of this paper is to introduce an on-vehicle measurement system to measure the engine brake performance in the driving process. The on-vehicle measurement system makes use of the vehicle driving information to deduce the engine brake performance during transportation, which can reduce the test times in the laboratory or proving ground and the sensor cost. The measurement system based on the vehicle longitudinal dynamics can adapt to various vehicle automatically without measuring the vehicle or engine parameters before installation. And the measurement system can also estimate gross vehicle mass approximately.
2017-09-04
Technical Paper
2017-24-0042
Ali Jannoun, Xavier Tauzia, Pascal Chesse, Alain Maiboom
Residual gas plays a crucial role in the combustion process of spark ignited engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique was developed on a spark ignited VVT engine to measure residual gas fraction during the compression phase. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the intake valves and between intake and exhaust valves respectively. Sampled gas was stocked in a sampling bag using a vacuum pump and measured with a standard gas analyzer. This paper describes in details the sampling technique and proposes a methodology allowing the evaluation of the residual gas fraction. For this purpose, five kinds of tests were undertaken.
2017-09-04
Technical Paper
2017-24-0129
Vladimir Merzlikin, Svetlana Parshina, Victoria Garnova, Andrey Bystrov, Alexander Makarov, Sergey Khudyakov
The core of this paper is reduction of exhaust emission and increase of diesel efficiency due to application of microstructure ceramic semitransparent heat-insulating coatings (SHIC). The authors conducted experimental study of thermal state of internal-combustion engine piston head with a heat-insulating layer formed by plasma coating method. The paper presents physical and mathematical simulation of improved optical (transmittance, reflectance, absorption, scattering) and thermo radiative (emittance) characteristics determining optimal temperature profiles inside SHIC. The paper considers the effect of subsurface volumetric heating up and analyzes temperature maximum position inside subsurface of this coating. Decrease of SHIC surface temperature of the coated piston in comparison with temperature of traditional opaque heat-insulating coatings causes NOx emission reduction.
2017-09-04
Journal Article
2017-24-0140
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Pablo Mendoza Villafuerte, Luis Sousa
Due to the need to properly quantify vehicle emissions in real world operation, Real Driving Emissions (RDE) test procedures will be used for measuring gaseous emissions on new EURO 6 vehicles.at the RDE 1 & 2: Commission Regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles. Updated regulations have been enhanced to define RDE tests boundaries and data analysis procedures, in order to provide an accurate way to obtain representative results. The boundary conditions defined for vehicle testing include external atmospheric temperature, which can range from 0ºC to around 30ºC, for moderate conditions and -7oC up to 35oC for extended conditions in RDE tests. As a result of this range of possible test ambient temperature, pollutant emissions and energy consumption can vary considerably.
2017-09-04
Technical Paper
2017-24-0138
Giovanni Meccariello, Livia Della Ragione
In the context of a transport sustainability, some solutions could be proposed from the integration of many disciplines, architects, environmentalists, policy makers, and consequently it may be addressed with different approaches. These solutions would be apply at different geographical levels, i.e. national, regional or urban scale. Moreover, the assessment of cars emissions in real use plays a fundamental role for their reductions. This is also the direction of the new harmonized test procedures (WLTP). Furthermore, it is fundamental to keep in mind that the new WLTC cycle will reproduce a situation closer to the reality respect to the EUDC/NEDC driving cycle. In this paper, we will be focused on vehicle kinematic evaluation aimed at valuation of traffic situation and emissions.
2017-09-04
Journal Article
2017-24-0169
Robert E. Morgan, Neville Jackson, Andrew Atkins, Guangyu dong, Morgan Heikal, Christopher lenartowicz
Electrification of long haul freight applications offers a number of major challenges mainly the cost and weight of on-board energy storage. Efforts to reduce the cost and complexity of electrification will continue, but there will remain a long term need for a clean and efficient chemically fuelled thermal powertrain. Best in class Otto and Diesel cycles engines are now approaching the practical limits of efficiency, requiring new approaches to deliver future improvements. Harnessing waste heat through a bottoming cycle delivers limited benefit due to the narrow temperature range at which heat is recovered and rejected. Integration of heat recovery directly to the main power cycle, via a ‘split engine cycle’ offers a novel approach to achieving significant improvements in efficiency. In the split engine cycle, compression and combustion strokes are performed in separate chambers.
2017-09-04
Technical Paper
2017-24-0018
Nikiforos Zacharof, Georgios Fontaras, Theodoros Grigoratos, Biagio Ciuffo, Dimitrios Savvidis, Oscar Delgado, J. Felipe Rodriguez
Abstract Heavy-duty vehicles (HDVs) account for some 5% of the EU’s total greenhouse gas emissions. They present a variety of possible configurations that are deployed depending on the intended use. This variety makes the quantification of their CO2 emissions and fuel consumption difficult. For this reason, the European Commission has adopted a simulation-based approach for the certification of CO2 emissions and fuel consumption of HDVs in Europe; the VECTO simulation software has been developed as the official tool for the purpose. The current study investigates the impact of various technologies on the CO2 emissions of European trucks through vehicle simulations performed in VECTO. The chosen vehicles represent average 2015 vehicles and comprised of two rigid trucks (Class 2 and 4) and a tractor-trailer (Class 5), which were simulated under their reference configurations and official driving cycles.
2017-07-19
WIP Standard
AS5420G
This SAE Aerospace Standard (AS) covers the requirements for a flexible, lightweight, low pressure, self-extinguishing, integrally heated silicone hose assembly. The hose has a fully fluorinated fluoropolymer inner liner and is primarily intended for use in aircraft potable water systems with an environmental operating temperature range of -65 °F (-54 °C) to +160 °F (+71 °C).
2017-07-18
WIP Standard
ARP6505
This AIR intends to better document and tabulate electrical load dynamics that influence power source capacity, power quality and stabiltiy.
2017-07-18
WIP Standard
J2986
This Recommended Practice provides a common method to measure wear of friction materials (brake pad assemblies and brake shoes) and their mating part (brake rotor or brake drum). These wear measurements apply to brakes fitted on passenger cars and light trucks up to 4,540 kg of Gross Vehicle Weight Rating or vehicles category M1 on the European Community.
2017-07-17
Article
Virtual-reality innovations are emerging as crucial new weapons to enhance - and abbreviate - the automotive product-development process.
CURRENT
2017-07-14
Standard
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
2017-07-14
WIP Standard
J814

This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.

The values presented describe desirable basic properties. The results from laboratory tests are not conclusive, and it should be recognized that the final selection of satisfactory coolants can be proven only after a series of performance tests in vehicles.

The document describes in general the necessary maintenance procedures for all engine coolants to insure proper performance as well as special requirements for coolants for heavy-duty engines.

This document does not cover maintenance of engine cooling system component parts.

CURRENT
2017-07-13
Standard
J1400_201707
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 100 to 8000 Hz 1/3 octave-band center frequencies. This test method is designed for testing flat samples with uniform cross section, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).
CURRENT
2017-07-13
Standard
J2749_201707
This recommended practice is a guideline for generating high strain rate tensile properties under defined conditions of unreinforced and reinforced plastics used in the automotive industry. Several types of test specimens are identified to suit different types of materials and test rates. This document is intended for strain rates between 10-3/s and 103/s. Test procedures for rates of 10-2/s and below; i.e., quasi-static conditions, are described in ASTM D 638 and ISO 527-1. The procedures in this document include quasi-static testing in order to provide a common test rate for both quasi-static and dynamic test programs. The general procedures listed in ASTM D 638 and ISO 527-1 should be followed when appropriate. The main purpose of this document is to determine the relative effects of increasing strain rate on the measured material properties. Data generated from these tests are comparative in nature.
CURRENT
2017-07-13
Standard
J1717_201707
SAE J1717 is an advisory document suggesting minimum recommended testing, appearance evaluation, and protocol for specifying the recommendations with regard to Singular Unassembled Automotive Interior Trim Parts.
CURRENT
2017-07-12
Standard
J2642_201707
This SAE Recommended Practice is intended to establish uniform procedures for developing specifications for automotive thermoplastics. It is intended for use by automotive companies and their suppliers of molded and/or fabricated parts from thermoplastic materials.
CURRENT
2017-07-12
Standard
J2253_201707
This SAE Standard is intended to serve as a guide for the collection of physical, mechanical, and thermal properties of fiber-reinforced polymer composite materials for automotive structural applications. This document attempts to utilize test methods applicable to the widest range of structural materials and processes without compromising the integrity of the data being sought. A summary of the material characterization is shown in Section 15.
CURRENT
2017-07-12
Standard
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: • Landing Gear System Configuration Requirements (Section 3) • Landing Gear System Functional Requirements (Section 4) • Landing Gear System Integrity Requirements (Section 5) • Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
2017-07-12
WIP Standard
J759
This SAE Recommended Practice provides the lighting function identification codes for use on all passenger vehicles, trucks, trailers, motorcycles, and emergency vehicles.
CURRENT
2017-07-12
Standard
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle.
CURRENT
2017-07-11
Standard
AS6449C
This document establishes the requirements for a dry film lubricant AS6449 lubricant for use on breathing oxygen system and potable water system components, for a temperature range of -90 to +300 °F. This document also establishes the Non-Destructive Test (NDT) procedures and criteria for coated production parts. This document requires qualified products and product applicators.
2017-07-11
WIP Standard
AS4111A
This SAE Aerospace Standard (AS) contains a sample test plan for AS 15531 or MIL-STD-1553B Remote Terminals (RT) that may serve several different purposes. This document is intended to be contractually binding when specifically called out in a specification, Statement of Work (SOW), or when required by a Data Item Description (DID). Any and all contractor changes, alterations, or testing deviations to this section shall be separately listed for easy review. The purpose of these tests is to verify that the Unit Under Test (UUT) responds properly in accordance with the requirements of the governing standard. The tests are not intended to verify the mission aspects stated in the equipment specification. The pass criteria is defined in each test paragraph. If any test fails, record the UUT response to that test. This general test plan is intended for design verification of remote terminals designed to meet the requirements of AS 15531 and MIL-STD-1553B with Notice 2.
Viewing 1 to 30 of 24076

Filter