Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 2825
2017-09-19
Technical Paper
2017-01-2150
Joshua Cemenska, Todd Rudberg, Michael Henscheid, Andrew Lauletta, Bradley Davis
In AFP manufacturing systems a large portion of total production time is consumed by inspection. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems are now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Expectations will be set for the accuracy for both ply boundary and lap/gap measurements. The time and resource cost of development and integration will also be discussed.
2017-09-19
Technical Paper
2017-01-2048
Bryan Shambaugh, Patrick Browning
This paper investigates the effect of various magnetic field configurations on an ionized exhaust plume operating under near vacuum conditions. The purpose of this investigation is to determine if deploying a toroidal magnetic field around an ionized exhaust plume can alter the exhaust profile. The test apparatus utilizes a series of twelve N52 grade neodymium magnets mounted on a steel toroid. The design is proposed as a low-cost alternative to toroidal electromagnets. Five different apparatus configurations were tested in this experiment. Each test was documented using 12 sets of photographs taken from a fixed position with respect to the flow. Photographs were taken after the arc jet had run for 10, 20, and 30 seconds. Data from each configuration was compiled using image processing and compared with data from other configurations at corresponding time periods. Two configurations were run as control tests without any magnetic interference.
2017-09-19
Technical Paper
2017-01-2050
Piotr Synaszko, Michal Salacinski, Patryk Ciezak
The work concerns the selection of measurement parameters for selected non destructive testing methods of Mi helicopter rotor blades after repair. Considered repair cases involve metal cracks in the sandwich skin and repair damage of honeycomb structure structure (puncture, dent). In the event of a crack, repair is performed by applying a composite-metal repair package. In case of damage of the core, its broken piece is replaced by a new one and then applied the same metal-composite package as in the case of crack repair. The present work focuses on detecting disbond between skin and core below repair patch and cracks under the repair package. Detecting cracks and assessing their length is important because the repair technology provides the repair package without removing of cracked part of skin. Authors have used laser shearography and C-scan methods for MIA and ET.
2017-09-19
Technical Paper
2017-01-2104
Marc Gatti
I Certification of a mono or multicore processor is going to request to demonstrate that we are able to master the determinism of the execution for all the applications which are going to be executed. Regarding the multicore we introduce a level of complexity to be managed regarding the execution of the application in parallel on each of the cores of the multicore processor whatever is the internal architecture of the processor. In an IMA context: This determinism is insured by the control of the WCET allowing defining a maximal boundary for all the accesses to all the services offered by the Operating System. The Platform Provider has no information about the applications which are going to be executed by his platform. In this condition the computation of a WCET on a multi-core, like it is done currently on a mono-core, will be realized by introducing constraints at the level of the internal functioning of the multi-core processor.
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
2017-09-19
Technical Paper
2017-01-2047
Tyler Vincent, Joseph Schetz, K. Lowe
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for approximate methods, and that is the subject of this paper.
2017-09-19
Journal Article
2017-01-2153
Patrick Land, Petros Stavroulakis, Richard Crossley, Patrick Bointon, Harvey Brookes, Jon Wright, Svetan Ratchev, David Branson
Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off the shelf NDT equipment utilizing Fringe projection and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with evaluating carbon composite panels. This process allows us to rapidly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using (AFP) and formed using Thermal Roll Forming (TRF).
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2119
Lars Stockmann, Andreas Himmler
Hybrid test systems are gaining more and more significance in the aerospace industry. The heart of such a system is a standardized communication infrastructure. It forms the basis to combine test equipment of different suppliers and (re-)use laboratory test means of different aircraft programs. This not only improves modularity and scalability, but allows to use the best equipment for a particular task. There are many challenges when designing such a communication infrastructure. To give but one example, before the different parts of a hybrid test system can exchange simulation data, there is the need for a controlled startup and configuration. But how can this be done when every system has completely different startup behavior, communicates its status through vendor specific interfaces and can be controlled only through vendor specific control software?
2017-09-19
Journal Article
2017-01-2114
Jann-Eve Stavesand, Sören Reglitz, Andreas Himmler
Abstract In the aerospace industry, methods for virtual testing cover an increasing range of test executions carried out during the development and test process of avionics systems. Over the last years, most companies have focused on questions regarding the evaluation and implementation of methods for virtual testing. However, it has become more and more important to seamlessly integrate virtual testing into the overall development process. For instance, a company’s test strategy might stipulate a combination of different methods, such as SIL and HIL simulation, in order to benefit from the advantages of both in the same test process. In this case, efforts concentrate on the optimization of the overall process, from test specification to test execution, as well as the test result evaluation and its alignment with methods for virtual testing.
2017-06-29
Journal Article
2017-01-9001
Hermann Ferschitz, Michael Wannemacher, Otto Bucek, Florian Knöbel, Wolfgang Breitfuß
Abstract RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH has focused on the simulation of in-flight icing conditions since 2012. Following the successful implementation of the icing conditions specified in EASA CS-25 Appendix C, it was expected that the facility could also be used to simulate the SLD conditions required by EASA CS-25 Appendix O. This paper sets forth theoretical considerations concerning the selection of suitable nozzles and their operation in the existing facility. The transport of large droplets through the contraction nozzle was simulated using a CFD program. The results then served as a basis for deriving secondary droplet breakup. The validations carried out confirm the theoretical considerations and identify potential limits and open research questions.
2017-03-28
Journal Article
2017-01-1512
Fuliang Wang, Zhangshun Yin, Shi Yan, Jia Zhan, Heinz Friz, Bo Li, Weiliang Xie
Abstract The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
2017-03-28
Journal Article
2017-01-1549
Taro Yamashita, Takafumi Makihara, Kazuhiro Maeda, Kenji Tadakuma
Abstract In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
2017-01-10
Technical Paper
2017-26-0336
Ganesh Liladhar Yewale, Abhishek Tapkire, D Radhakrishna, Popat Shejwal, Kaushal Singh, Gaurav Panchal
Abstract VRDE has developed Wankel type rotary engine to achieve high power output & fuel efficiency for indigenization programme of UAVs. This engine is meeting all performance parameters needed for intended aerial vehicle. This paper describes the testing methodology followed by development engineers to prove the endurance and reliability of UAV engine for airworthiness certification. This paper gives the brief about testing carried out on the Wankel engine, failures faced during endurance testing and their rectification to enhance the life of the engine to achieve hundred test cycle mark. This paper also briefs about the test set up, endurance test cycles simulating the practical operating conditions.
2016-09-27
Technical Paper
2016-01-2123
Matthias Busch, Benedikt Faupel
Abstract The integration of omega stringers to panels made of carbon fiber reinforced plastic (CFRP) by adhesive bonding, which is achieved by baking in an autoclave, must be subject to high quality standards. Failures such as porosity, voids or inclusion must be detected safely to guaranty the functionality of the component. Therefore, an inspection system is required to verify these bonds and detect different kinds of defects. In this contribution, the advantages of a robotic inspection system, which will be achieved through continuous testing, will be introduced. The testing method is the active thermography. The active thermography has major advantages compared with other non-destructive testing methods. Compared to testing with ultrasonic there is no coupling medium necessary, thus testing will be significantly enhanced.
2016-09-27
Technical Paper
2016-01-2145
Ryan Haldimann
Abstract Inspection of fasteners prior to installation is critical to the quality of aerospace parts. Fasteners must be inspected for length/grip and diameter at a minimum. Inspecting the fasteners mechanically just prior to insertion can cause additional cycle time loss if inspection cannot be performed at the same time as other operations. To decrease fastener inspection times and to ensure fastener cartridges contain the expected fastener a system was devised to measure the fastener as it travels down the fastener feed tube. This process could be adapted to inspection of fasteners being fed to the process head of a running machine eliminating the mechanical inspection requirement and thus decreasing cycle time.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Technical Paper
2016-01-2058
Thibaut Billard, Cedric Abadie, Bouazza Taghia
Abstract The present paper reports non-electrically intrusive partial discharge investigations on an aeronautic motor. Relevancy, robustness and repeatability of partial discharge testing procedures, both on insulating materials characterization and on operating aeronautic equipment are essential to ensure reliability of the aircraft systems. The aim of this paper is to be the very first step of defining such procedures and the associated test equipment. To do so, the paper will start by providing an understanding of partial discharge phenomena and will review typical more electrical aircraft architecture. Key characteristics causing partial discharge risk to increase will be highlighted. The impact of harness length, high performance power electronics and voltage level increase on insulation system is demonstrated.
2016-09-20
Technical Paper
2016-01-2047
K. Suresh, Rajkumar Dhande, Udupi Ananthakrishna Acharya
Abstract Reducing the amount of physical testing is of importance in the aeronautical industry, where each physical test represents a significant cost. Apart from the cost aspect, it may also be difficult or hazardous to carry out physical testing. Specific to the aeronautic industry are also the relatively long development cycles, implying long periods of uncertainty during product development. In any industry a common viewpoint is that of verification, validation, and uncertainty quantification using simulation models are critical activities for a successful development of a product. In Aeronautical application, the design of store's structural equipments needs to be certified in accordance with MIL-T-7743F [1]. This paper focuses on a case study for shock analysis, whereby an attempt has been made to reduce the cost of certification by way of replacing the actual physical testing by a reliable high fidelity FE simulation.
2016-09-20
Technical Paper
2016-01-2044
Jeffrey J. Joyce, Scott Beecher, Laurent Fabre, Ramesh Rajagopalan
Abstract Over the past few decades, advanced methods have been developed for the analysis of digital systems using mathematical reasoning, i.e., formal logic. These methods are supported by sophisticated software tools that can be used to perform analysis far beyond what is practically achievable using “paper and pencil” analysis. In December 2011, RTCA published RTCA DO-178C [1] along with a set of technical supplements including RTCA DO-333 [2] which provides guidance on the use of formal methods towards the certification of airborne software. Such methods have the potential to reduce the cost of verification by using formal analysis instead of conventional test-based methods to produce a portion of the verification evidence required for certification.
2016-09-20
Technical Paper
2016-01-1994
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation.
2016-09-20
Technical Paper
2016-01-2004
M. Parvez Alam, Dinesh Manoharan
In this paper we discuss about the design and development of an “Autonomous Amphibious Unmanned Aerial Vehicle (AAUAV)” that can fly autonomously to the polluted water areas where human accessibility is formidable to test the water quality. The AAUAV system is an integrated multi-copter with tilt rotor capability to facilitate easy landing, navigation and maneuver on water. A 3D CAD model has been designed and analyzed. A specific propulsion system has been devised and lab tested. A proof of concept model has been made and tested in the field with its instruments to ascertain its technical/ operational feasibility. This system can also be tailored to collect and store the water samples from the polluted sites for further comprehensive research at the laboratory. AAUAV system is the novel solution to the polluted environment through a complete integrated system. This will be an effective alternative for the conventional water sampling techniques.
2016-09-20
Technical Paper
2016-01-2000
Mark Bodie, Thierry Pamphile, Jon Zumberge, Thomas Baudendistel, Michael Boyd
Abstract As technology for both military and civilian aviation systems mature into a new era, techniques to test and evaluate these systems have become of great interest. To achieve a general understanding as well as save time and cost, the use of computer modeling and simulation for component, subsystem or integrated system testing has become a central part of technology development programs. However, the evolving complexity of the systems being modeled leads to a tremendous increase in the complexity of the developed models. To gain confidence in these models there is a need to evaluate the risk in using those models for decision making. Statistical model validation techniques are used to assess the risk of using a given model in decision making exercises. In this paper, we formulate a transient model validation challenge problem for an air cycle machine (ACM) and present a hardware test bench used to generate experimental data relevant to the model.
2016-09-20
Technical Paper
2016-01-2064
Shashank Krishnamurthy, Stephen Savulak, Yang Wang
Abstract The emergence of wide band gap devices has pushed the boundaries of power converter operations and high power density applications. The wide band gap devices in conjunction with silicon on insulator electronic components enable the realization of power converters that can operate at high ambient temperatures that are typically found in aerospace engine environments. This paper describes the design and test of a power electronic inverter that converts a fixed input DC voltage to a variable voltage variable frequency three phase output. The design of the key functional components such as the gate drive, power module, controller and communication will be discussed in this paper. Test results for the inverter at high temperature are also presented.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2016-09-20
Journal Article
2016-01-2030
Jon Zumberge, Michael Boyd, Raul Ordonez
Cost and performance requirements are driving military and commercial systems to become highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. A process of model and control algorithm validation for a dc-dc boost converter circuit based on acceptance sampling is presented here. The validation process described in this paper is based on MIL-STD 3022 with emphasis on requirements settings and the testing process. The key contribution of this paper is the process for model and control algorithm validation, specifically a method for decomposing the problem into model and control algorithm validation stages.
2016-09-20
Journal Article
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
Abstract The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
2016-06-15
Technical Paper
2016-01-1805
Florian Zenger, Clemens Junger, Manfred Kaltenbacher, Stefan Becker
Abstract A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
2016-04-05
Journal Article
2016-01-1577
Tateru Fukagawa, Shinnosuke Shimokawa, Eiji Itakura, Hiroyuki Nakatani, Kenichi Kitahama
Abstract The aerodynamic stability of energy-saving, lightweight, and low-drag vehicles is reduced by crosswind disturbances. In particular, crosswinds cause unsteady motion in vehicles with low-drag body shapes due to aerodynamic yaw moment. To verify fluctuations in the unsteady aerodynamic forces of a vehicle, a direct measurement method of these forces in a crosswind test was established using inertial force and tire load data. The former uses an inertia sensor comprised of a gyro, acceleration sensor, and GPS sensor, and the latter uses a wheel force sensor. Noise in the measurement data caused by the natural frequency of the tires was reduced using a spectral subtraction method. It was confirmed that aerodynamic data measured in the crosswind test corresponded to wind tunnel test data. Numerical expressions were defined to model the unsteady aerodynamic forces in a crosswind.
Viewing 1 to 30 of 2825