Criteria

Text:
Sector:
Display:

Results

Viewing 151 to 180 of 15301
2017-01-10
Technical Paper
2017-26-0315
Jyoti Kale, Satish Kumar, Pravin Lavangare, Anand Subramaniam
Abstract The Steering system is one of the most safety critical systems in an automobile. With time the durability, reliability and the fine-tuning of the parameters involved in this subsystem have increased along with the competitiveness of the market. In a competitive market, accelerated testing is the key to shorter development cycles. It is observed that the majority of component manufacturers have a preference on vehicle level testing to achieve their development goals. The vehicle level trials are time consuming and lack the control and repeat-ability of a laboratory environment. This paper describes the development of a steering test rig designed to simulate the disturbances experienced on road within a controlled laboratory environment. The five axis steering rig would allow simulation of individual road wheel displacement along with steering wheel angle input and lateral steering rack displacements. The rig also is designed to be adaptable to a range of vehicle categories.
2017-01-10
Technical Paper
2017-26-0327
Onkar Deshpande, Shrikant Rangire
Abstract Increase in customer awareness for better vehicle noise together with strict pass-by noise limits have compelled the automotive industry to improve the overall vehicle noise performance. Out of various contributors to the overall vehicle noise, tail pipe noise is the major contributor. There is a need of efficient tail pipe noise measurement process for tuning the exhaust system. Modified methodology was proposed as conventional methodologies have limitations considering Indian scenario. In modified methodology tail pipe noise is measured during pass by noise test. This paper describes the comparative study of both methodologies with measurement results. Advantages and disadvantages of both measurement methodologies are also discussed.
2017-01-10
Technical Paper
2017-26-0325
Anup Batra, Sreenivasa Gupta, Husain Agha, K Rajakumar, Rajiv Modi
Abstract With the advancement in vehicle technology over the years, many intuitive technologies are coming in automotive passenger vehicles to improve the safety aspects during vehicle driving in night conditions. In addition to headlamps, cornering lamps or infrared camera with head up display etc. are evolving as a part of AFS (Advanced Front Lighting Systems) to aid driver vision. Many OEMs are following conventional methodology of subjective assessments with the ratings on different numerical scale mapped with customer acceptance to validate head lamps and its tech updates. These methods lag in getting repeatability of results, acceptance reliability and not knowing the limitations of the installed system due to high dependency on the selected evaluators. This paper emphasizes on robust test methodology development to validate the complete performance of cornering lamps with the objective test data analysis.
2017-01-10
Technical Paper
2017-26-0326
Michael Wohlthan, Gerhard Pirker, Igor Sauperl, Andreas Wimmer, Wolfram Rossegger, Norbert Buch
Abstract Experimental investigations on engine test beds represent a significant cost in engine development. To reduce development time and related costs, it is necessary to check the quality of measurements automatically whenever possible directly on the test bed to allow early detection of faults. A fault diagnosis system should provide information about the presence, cause and magnitude of an inconsistency in measurement. The main challenge in developing such a system is to detect the fault quickly and reliably. However, only faults that have actually occurred should be detected because the user will only adopt a system that provides accurate results. This paper presents a methodology for automated fault diagnosis at engine test beds, starting with an explanation of the general procedure. Next, the methods applied for fault detection are introduced.
2017-01-10
Technical Paper
2017-26-0299
Mahesh Kishore Patekar, Jeevan Patil, Sivakumar Palanivelu, Bhupendra Bhat
Abstract Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
2017-01-10
Technical Paper
2017-26-0292
Irshad Mahammad, Vinay Nagaraj, Saurabh Prabhakar
Abstract To replicate on-road brake test cycle of cooling or heating through Computational Fluid Dynamics (CFD) simulations, the vehicle model with brake assembly must be solved in transient mode. However, such simulations require significant computational time owning to the physics involved in computing the variation of temperature with time. A methodology developed using commercial CFD tools to predict the Heat Transfer Coefficient (h), Cooling Coefficient (b) and rotor temperatures is described in this paper. All the three modes of heat transfer: conduction, convection and radiation are considered in the current method. Heat transfer coefficients from the CFD simulations are exported to Computer Aided Engineering (CAE) tools to validate the Brake Rotor Thermal Coning caused by high thermal gradients in brake rotor.
2017-01-10
Technical Paper
2017-26-0369
R Muthuraj, Sundararajan Thiyagarajan, E Vignesh, C Kannan, Deepa Praphu
Abstract Overheating in commercial vehicles, even though if it’s in LCV segment, is a problem of high significance. There could be various level of problems that may arise due to heat generation resulting from braking (oversized brake drums left the wheels with lesser packaging clearances for air flow and cooling) and some of them are: 1. Early tire wear /reduction in tire life, 2. Air valve heat damage /air leak issues, 3. Frequent puncture problems, 4. Failure of other mating components and other heat initiated failures. However optimum the vent hole shape in a wheel may be, the air flow in the vicinity of drum periphery and wheel rim ID wouldn’t be sufficient enough because of the lesser clearance and packaging space as mentioned earlier. The basic construction of a wheel with disc welded to rim base ID was apparently modified to integrate the disc and gutter and weld it to rim OD.
2017-01-10
Technical Paper
2017-26-0340
Sarang Bire, Prashant R Pawar, M Saraf
Abstract Air suspension systems had been introduced in automobiles since 1950s. These systems are being explored to improve the ride comfort, handling stability and also serve as a medium for better cargo protection. These system are well developed for buses and high end passenger sedans, also have feasibility for adapting for wide range of configurations of suspension system and axle. Passenger cars and Sports Utility Vehicle (SUV) pickup category of vehicle offers different challenges such as space availability, spring selection and characterization that need to be addressed for successful implementation of air suspension in these category vehicles. This work defines methodology to implement air suspension system in SUV Pickup category vehicle. Paper work includes concept study, mathematical co-relation, and prediction of air spring characteristics and integration of experimental and analytical tool for development of air suspension system.
2017-01-10
Technical Paper
2017-26-0152
Serge Lievens, Bjorn Van Gasse, Sandra Claeys, Jurgen De Kimpe, Amol Chore
Abstract In conjunction with modern engine design and long term reliability needs, the resistance of engine coolants to oxidative stress has become an increasingly important feature. This paper describes the results of a study that evaluated the influence of parameters such as temperature, aeration and catalytic metal interaction on the oxidation stability of engine coolants. Three different test set-ups were used in which the selected conditions put variable weights to the contribution of each parameter. A comparison was made of the oxidation resistance of multiple high quality OEM approved coolant products with different additive technologies. This work is different from previous investigations focusing mainly on the behavior of coolants in single test conditions.
2017-01-10
Technical Paper
2017-26-0303
Ayan Bhattacharya, Naveen Malik, Sahil Jindal
Abstract Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
Abstract The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion in a driving cycle. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator and catalytic converter under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the UNECE Regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, thermal state of the engine cooling system and the catalytic converter.
2017-01-10
Technical Paper
2017-26-0336
Ganesh Liladhar Yewale, Abhishek Tapkire, D Radhakrishna, Popat Shejwal, Kaushal Singh, Gaurav Panchal
Abstract VRDE has developed Wankel type rotary engine to achieve high power output & fuel efficiency for indigenization programme of UAVs. This engine is meeting all performance parameters needed for intended aerial vehicle. This paper describes the testing methodology followed by development engineers to prove the endurance and reliability of UAV engine for airworthiness certification. This paper gives the brief about testing carried out on the Wankel engine, failures faced during endurance testing and their rectification to enhance the life of the engine to achieve hundred test cycle mark. This paper also briefs about the test set up, endurance test cycles simulating the practical operating conditions.
2017-01-10
Journal Article
2017-26-0242
Guido Tosolin, Kwang Chan Ko
Abstract A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
2017-01-10
Journal Article
2017-26-0260
Amar Penta, Prasad Warule, Sanjay Patel, Lohit Dhamija
Abstract Single plate dry clutch is most commonly used in automotive transmission. This paper proposes a unique approach of modelling a single plate dry clutch in Simulink and Simscape simulation environment. Clutch model is divided into two subsystems as translational and rotational. The translational system is linear system of diaphragm and cushion spring as a two-degree freedom system. Nonlinearity of the diaphragm and cushion spring has been modelled based on experimental data. This enables to simulate friction torque variation during clutch engagement. In rotational system, frictional torque generation between flywheel-clutch disc and pressure plate-clutch disc has been modelled separately. This novel approach of developing separate friction models helps in understanding variation in torque carrying capacity due to rise in the temperature of the friction pads because of frictional and engine heat.
2016-11-16
Journal Article
2016-01-9047
Taewon Han, Huajun Zhen, Gediminas Mainelis
Abstract We recently developed a novel diesel emissions control device, Electrostatic Screen Battery for Emissions Control (ESBEC), where diesel exhaust particles are collected onto metal screens using electrostatic principle. This paper focuses on further development of this technology: design and integration of a particle charger and testing of ESBEC with diesel exhaust. Two units - 0.038 and 0.152 m (1.5 and 6 inches) in diameter - were fabricated using 3D printing. Both units feature cylinder-shaped housing integrating the electrical charger and up to seven pairs of metal screens, which collect airborne particles. In the small-scale version, particles are charged by ions emitted from a carbon fiber brush, while in the large-scale version, this is done by using two tungsten wires traversing the cross-section of ESBEC in a crisscross pattern.
2016-11-08
Technical Paper
2016-32-0054
Barath Mohan, KVM Raju, Sai Praveen Velagapudi, Chandramouli Padmanabhan
The aim of the present study is to develop feasible test methods to measure the lateral force characteristics of motorcycle tires. In this work, new experimental procedures are developed to estimate the lateral friction coefficient and lateral stiffness characteristics of motorcycle tires. A fairly accurate tire model is developed using the measured lateral force characteristics. Based on this tire model, the steer behavior and the cornering limits of the motorcycle are estimated using an analytical model of the vehicle. The results are validated with experimental data. The test methods proposed are shown to be adequate to estimate tire characteristics that are important for tire development and is less expensive compared to the standard testing facilities available.
2016-11-08
Journal Article
2016-32-0059
Maki Kawakoshi, Takashi Kobayashi, Makoto Hasegawa
Abstract For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
2016-11-07
Technical Paper
2016-22-0005
Matthieu Lebarbé, Pascal Baudrit, Pascal Potier, Philippe Petit, Xavier Trosseille, Sabine Compigne, Mitsutoshi Masuda, Takumi Fujii, Richard Douard
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
2016-11-07
Technical Paper
2016-22-0009
Hollie A. Pietsch, Kelly E. Bosch, David R. Weyland, E. Meade Spratley, Kyvory A. Henderson, Robert S. Salzar, Terrance A. Smith, Brandon M. Sagara, Constantine K. Demetropoulos, Christopher J. Dooley, Andrew C. Merkle
Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1.
2016-11-07
Technical Paper
2016-22-0013
Chiara Giordano, Svein Kleiven
This study describes a method to identify laboratory test procedures and impact response requirements suitable for assessing the biofidelity of finite element head models used in prediction of traumatic brain injury. The selection of the experimental data and the response requirements were result of a critical evaluation based on the accuracy, reproducibility and relevance of the available experimental data. A weighted averaging procedure was chosen in order to consider different contributions from the various test conditions and target measurements based on experimental error. According to the quality criteria, 40 experimental cases were selected to be a representative dataset for validation. Based on the evaluation of response curves from four head finite element models, CORA was chosen as a quantitative method to compare the predicted time history response to the measured data.
2016-10-28
Technical Paper
Tests and Testing
2016-10-25
Technical Paper
2016-36-0134
Levi N. da Silva, Kerolin F. Tessari, Maicon D. Garcia, Thiago C. de Freitas
Abstract Experimental results reveal that the temperature rise of two contacting bodies in relative sliding motion is related to increase of torque and loads caused by expansion of bearing components. The evolution of effects of thermally induced loads with time in an angular contact ball bearing in a controlled temperature environment is studied experimentally and analytically. The test apparatus is an axially-loaded angular contact ball bearing instrumented to measure the dynamic frictional torque as well as the transient temperature of the raceway and environment inside of a chamber with controlled temperature. Effects of friction torque were examined at different speeds, operating temperatures and pre-loads. The mathematical model developed provides a comprehensive thermal analysis of the ball bearing with provision for frictional heat generation, heat transfer processes and thermal expansion of bearing components.
2016-10-25
Technical Paper
2016-36-0124
Luís Felipe Ferreira Motta Barbosa, José Elias Tomazini, Marcelo Sampaio Martins, Lucas Reis Rangel Querido Moreira, Marcos Yukio Tokuue Hori, Luís Felipe Santos Silva
Abstract The torsional stiffness of a chassis is one of the most important properties of a vehicle’s structure, once a low torsional stiffness has many negative effects, especially in handling characteristics. For the first time, the torsional stiffness was considered on the design of a Baja SAE prototype of the team from UNESP - FEG, “Equipe Piratas do Vale”. In this work, a finite element analysis is first performed in order to evaluate the torsional stiffness of this prototype, called MB1114. Then, an experimental evaluation of this parameter is executed, detailing the post-processing of the results, such as the hysteresis effect and uncertainty analysis. It also shows that it is possible to measure the torsional stiffness of chassis with a low experimental uncertainty without spending too much. The test rig used is simple to be produced and can be easily stocked. Those features are important for Baja and Formula SAE teams.
2016-10-25
Technical Paper
2016-36-0127
Gustavo Siebert, Amilton Sinatora
Abstract The growing use of tribotest has been helping the researches to understand the actuation mechanisms of additives on the friction and wear control of engine parts. But, it is common to observe differences between the tribofilms formed in real situation from that obtained using tribotests. Furthermore, the automakers have difficulty to correlate the results obtained using tribotests with that performed using engines in dynamometers. For the piston ring/cylinder bore tribosystem is almost impossible to reproduce its real tribosystem using tribotests. Therefore simplifications are necessary and they affect the tribochemical behavior of the tribosystem. To understand how these simplifications and the test parameters affect the tribochemical behavior of the simplified tribosystem is critical to design a tribotest that correlate well with the real situation.
2016-10-25
Technical Paper
2016-36-0170
Moisés Krutzmann, Dimitrius Caloghero, Tiago Schmidt, Rogério Marczak
Abstract The knowledge of mechanical behaviour of material is vital for durability prediction and attending initial project requirements. Through the experimental evaluations is possible to measure this behaviour and use it as input in numerical simulations. Temperature changes considerably static and dynamic mechanical properties of materials, particularly in elastomers. This study was motivated to predict the durability under several working temperatures of center bearings rubber cushion of driveshafts that needs to achieve prespecified stiffness and durability parameters. Standardized specimens were tested in fatigue for experimental investigation of the rubber compound. Durability tests were performed in the final product sample and compared with tests performed in standardized specimens. It was concluded that this approach produces accurate results for fatigue predictions and provided useful equations for practical design applications and reducing product validation time.
2016-10-25
Technical Paper
2016-36-0280
Marcelo F. Gomes, Eduardo Catalani, Daniel Rodrigues, Klemer Santiago
Abstract Vehicles sold in many countries around the globe must comply with ECE R14 or FMVSS 210 regulation in order to ensure proper function of the safety belt system when submitted to high loads. In these regulations, the procedure requests to apply high forces on the safety belts by using proper devices. All components of the system such as seats, safety belts, anchorage points and vehicle body have to resist the specified loads with no damages. The loads are applied slowly and sustained over a long period of time, characterizing a quasi-static test. The present work was developed to understand the energy distribution among all components during seat anchorage test and determine any potential failure, including cases in which components are changed. The system was optimized considering the energy dispersed by each component and their material plastic strength limit.
2016-10-25
Technical Paper
2016-36-0423
Bruno Barbosa Salles, Almir Atoatte, Robson Cruz
Abstract Targeting the current demands for engines with lower emissions, reduced fuel consumption, downsizing and higher peak combustion pressures, thyssenkrupp has developed a new cranktrain concept comprising an increased radial transition between journal and web that extends itself into the bearing’s load-carrying zone, creating a symmetrical U-shaped profile. The resulting non-straight bearing contour restricts the use of a standard bearing shell and led to the development of an integral bearing solution, where a copper based material was applied directly to the connecting rod big end bore. The so-called U-shape cranktrain was experimentally evaluated on a fired engine through a series of eight test steps with varied loads and speeds, being each step condition defined in a way that increased severity was applied to the connecting rod bearings as the test proceeded. The engine was disassembled after each step for analysis and measurement of the crankshaft and connecting rods.
2016-10-25
Technical Paper
2016-36-0457
Weber Ferreira Veloso, Marcela Rodrigues Machado Garcia, Sabrina Glicéria Firmino, Juliana Queiroga Gazaniga de Assis, Diego Palhares de Faria
Abstract Through a computing transient thermal analysis, the team evaluated the quality of the material and its resistance to thermal fatigue by a comparative method. With the steel used in 1020 failed in 2014, for the team Formula UFMG, the 1020 steel, 1045, 1070 and stainless steel 304 were compared, where the stainless steel was the parameter of better resistance to thermal cracking. The main calculated parameters were subjected to empiric validations and the best material has been applied and used in the 2015 season. The use of the disks in a competition and in a battery of tests superior to 2014, permitted the evaluation of the final result of applying the material.
2016-10-25
Technical Paper
2016-36-0235
Juliana Lima da Silva Lopes, Cleber Albert Moreira Marques, Genildo de Moura Vasconcelos, Rafael Barreto Vieira, Flavio Fabricio Ventura de Melo Ferreira, Marcelo Henrique Souza Bomfim
Abstract This paper approaches the use of machine vision as an automation tool for verification tests in automotive Instrument Panel Cluster (IPC). A computer integrated with PXI modular instruments, machine vision software and Integrated Development Environment (IDE) composes the test system. The IPC is verified in closed-loop using the Hardware-in-the-Loop (HiL) technique in which the HiL system simulates all Electronic Control Units (ECUs) that interact with the IPC. Every simulated ECUs signals are sent to the IPC over CAN (Controller Area Network) bus or hardwired I/O using PXI modules integrated with IDE and its responses are captured by cameras. Using machine vision such images are subjected to Digital Image Processing (DIP) techniques as pattern matching, edge detection and Optical Character Recognition (OCR), which can be applied to interpret speedometer, tachometer, fuel gauges, display and warning lights.
2016-10-25
Technical Paper
2016-36-0226
Javier Gutierrez, Guido Tosolin, Alexandre Catala
Abstract The integration of IDIADA Spain virtual Proving Ground (ISVPG) within ADAMS/Car offers a new virtual scenario to carry out detailed analysis of durability as well as Comfort & Ride. Moreover, these high resolution roads (modeled as OpenCRG road format) support model development activities through better correlation with experimental tests. This approach helps to reduce the number of real tests and to shorten development process times. At the same time, this data would be prepared for performance testing to support driving simulator and active system development. The objective of this paper is to demonstrate the benefits to use FTire model for Ride and Comfort applications and the use of flexible bodies for better predictions. The availability of this information will depend on the status of the project and the level of maturity of the simulation input data. As a result, different levels of accuracy will be reached according to the existing input data.
Viewing 151 to 180 of 15301