Criteria

Text:
Display:

Results

Viewing 121 to 150 of 15303
2017-03-28
Journal Article
2017-01-0462
Marcel Meuwissen, Jippe Van Ruiten, Thijs Besseling, Robbert van Sluijs, Maik Broda, Brian Pearce, Fenton I. O'Shea
Abstract Fuel economy improvement efforts in engines have focused on reducing parasitic losses. This paper addresses the friction losses in the valve train chain drive system where about half of the losses is caused by the chain sliding on plastic guide and tensioner arm faces (Figure 1). Efforts have been made to reduce these friction losses by optimizing the chain link profile, the geometry of the guide and tensioner arm rails, and developments towards low friction materials. This paper describes the approach taken for the development of new low-friction chain tensioner arm plastic materials. The approach is characterized by building an understanding of the friction mechanisms and identifying the most critical material’s properties. A lab-scale test is used for a first assessment of the friction performance of materials. The correlation between this lab-scale test and the actual chain-on-tensioner arm application is discussed.
2017-03-28
Journal Article
2017-01-0863
Bader Almansour, Sami Alawadhi, Subith Vasu
Abstract The biofuel and engine co-development framework was initiated at Sandia National Labs. Here, the synthetic biologists develop and engineer a new platform for drop-in fuel production from lignocellulosic biomass, using several endophytic fungi. Hence this process has the potential advantage that expensive pretreatment and fuel refining stages can be optimized thereby allowing scalability and cost reduction; two major considerations for widespread biofuel utilization. Large concentrations of ketones along with other volatile organic compounds were produced by fungi grown over switchgrass media. The combustion and emission properties of these new large ketones are poorly known.
2017-03-28
Journal Article
2017-01-0892
Eric Wood, Jeffrey Gonder, Forrest Jehlik
Abstract On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle’s fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of “off-cycle credits” that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.
2017-03-28
Journal Article
2017-01-0901
Alex Pink, Adam Ragatz, Lijuan Wang, Eric Wood, Jeffrey Gonder
Abstract Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption. Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles.
2017-03-28
Journal Article
2017-01-0801
Keith Vertin, Brent Schuchmann, William Studzinski, Richard S. Davis, Thomas G. Leone, James E. Anderson, Asim Iqbal
Abstract Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
2017-03-28
Technical Paper
2017-01-0781
Philip Zoldak, Jeffrey Naber
Abstract The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
2017-03-28
Journal Article
2017-01-0989
Jennifer H. Zhu, Christopher Nones, Yan Li, Daniel Milligan, Barry Prince, Mark Polster, Mark Dearth
Abstract Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
2017-03-28
Journal Article
2017-01-0777
Gordon McTaggart-Cowan, Jian Huang, Sandeep Munshi
Abstract Natural gas offers the potential to reduce greenhouse gas emissions from heavy-duty on-road transportation. One of the challenges facing natural gas as a fuel is that its composition can vary significantly between different fuel suppliers and geographical regions. In this work, the impact of fuel composition variations on a heavy-duty, direct injection of natural gas engine with diesel pilot ignition is evaluated. This combustion process results in a predominantly non-premixed gaseous fuel combustion event; as a result, end-gas autoignition (knock) is not a concern. Changes in the fuel composition do still impact the combustion, both through the changes in the chemical kinetics of the reactions and due to changes in the density of the fuel. Increasing concentrations of heavier hydrocarbons, such as ethane or propane, in the fuel lead to higher fuel densities and hence greater fuel mass being injected for a given injection duration.
2017-03-28
Journal Article
2017-01-0743
Kukwon Cho, Eric Latimer, Matthew Lorey, David J. Cleary, Mark Sellnau
Abstract Fuel efficiency and emission performance sensitivity to fuel reactivity was examined using Delphi’s second-generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The study was designed to compare a US market gasoline (RON 92 E10) to a higher reactivity gasoline (RON 80) at four operating conditions ranging from light load of 800 rpm / 2.0 bar gross indicated-mean-effective pressure (IMEPg) to medium load of 2000 rpm / 10.0 bar IMEPg. The experimental assessment indicated that both gasolines could achieve good performance and Tier 3 emission targets at each of the four operating conditions. Relative to the RON 92 E10 gasoline, better fuel consumption and engine-out emissions performance was achieved when using RON 80 gasoline; consistent with our previously reported single-cylinder engine research [1].
2017-03-28
Journal Article
2017-01-0131
Chiranth Srinivasan, Chonglin Zhang, Haiyang Gao, De Ming Wang, Jody Slike
Abstract In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
2017-03-28
Journal Article
2017-01-0318
John George, Kishore Pydimarry, Jeremy Seidt, Kelton Rieske
Abstract Characterization of the plastic and ductile fracture behavior of a ferrous casting commonly used for the steering knuckle of an automotive suspension system is presented in this work. Ductile fracture testing for various coupon geometries was conducted to simulate a wide range of stress states. Failure data for the higher stress triaxiality were obtained from tension tests conducted on thin flat specimens, wide flat specimens and axisymmetric specimens with varying notch radii. The data for the lower triaxiality were generated from thin-walled tube specimens subjected to torsional loading and compression tests on cylindrical specimens. The failure envelopes for the material were developed utilizing the test data and finite element (FE) simulations of the corresponding test specimens. Experiments provided the load-displacement response and the location of fracture initiation.
2017-03-28
Journal Article
2017-01-0319
Dae-Young Kim, Yongtak Han, Sahnghoon Shin, Hyungsub Yook
Abstract The aim of this paper is to apply an advanced fracture model and to evaluate its applicability in automotive seat structures. A Generalized Incremental Stress-State dependent damage Model (GISSMO), which was one of the advanced fracture models implemented in LS-DYNA, was adopted as a fracture model. A description of the damage parameter identification process with material tests was introduced in this study. The GISSMO adopts most of the fracture factors, and was introduced in previous works. In order to evaluate the fracture strain in various stress states, uniaxial tension, simple shear-tension, notched-tension, and biaxial tension tests were carried out. The GISSMO damage parameters were calculated and identified using reverse analysis method and theoretical equations with some numerical fitting techniques. The results were compared with material test results, and it was evaluated that the values might be applicable to the seat frame model.
2017-03-28
Journal Article
2017-01-0346
Radwan Hazime, Thomas Seifert, Jeremy Kessens, Frank Ju
Abstract A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tension-compression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanism-based DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions.
2017-03-28
Journal Article
2017-01-0518
Sebastian Hann, Lukas Urban, Michael Grill, Michael Bargende
Abstract Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
2017-03-28
Journal Article
2017-01-0400
Theo Rickert
Abstract Hole drilling is a very common technique for measuring residual stresses. Adding an orbiting motion of the drill was found to improve hole quality in difficult to drill materials and has been in practice for decades. This study compares measurements using various orbiting amounts. Each measurement was repeated twice to evaluate measurement statistics. There is a distinct, though relatively small, effect of the hole shape when no orbiting is used. It disappears already when the hole is 50% larger than the tool size. Different orbiting amounts also produce systematically different results. These may be related to the absolute hole size.
2017-03-28
Journal Article
2017-01-0647
Bradley Denton, Christopher Chadwell, Raphael Gukelberger, Terrence Alger
Abstract The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
2017-03-28
Journal Article
2017-01-0380
Liang Wang, Robert Burger, Alan Aloe
Abstract As an automobile is driven, its components and structures consistently experience the random excitations from road inputs and periodic vibration from engine firing. This could cause durability issues if the component structure isn’t fully validated. Vibration fatigue is a field of study regarding the assessment and improvement of a component’s or system’s robustness to vibration inputs. This paper introduces aspects of vibration fatigue to help designers, release engineers, and test engineers better understand the requirements, testing methodologies available, and strategies for improving vibration fatigue performance for the design and validation testing of their products. Vibration characteristics such as typical vibration levels and frequency content for varied areas in the automotive environment are introduced. Methodologies available for conducting actual vibration testing are introduced with listed advantages and disadvantages.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
Abstract CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
2017-03-28
Journal Article
2017-01-0390
Muhamamd Yasir, Helmut Wieser, Daniel Knoll, Simon Burger
Abstract The purpose of this paper is to highlight the importance of material and design selection for future light weight exhaust systems. Material validation for new components usually requires various types of tests on different types of test coupons. There are varieties of corrosion test methods which are in practice since years now. Majority of these testing approaches are used to make relative ranking among different materials. In most of these tests a correlation between testing and field behavior is missing. There is also no test available in which both external as well as internal corrosion can be realized simultaneously. Additionally, none of these corrosion tests cover the design aspects of the components. To combat this challenge Faurecia has built and validated a corrosion test setup where complete exhaust silencer can be tested near to real conditions. A comparative study was performed between field parts and test parts to validate the test cycle.
2017-03-28
Journal Article
2017-01-0403
Guangqiang Wu, Huwei Wu
Abstract Experimental schemes, frequency characteristics, subjective and objective sound quality evaluation and sound quality prediction model establishment of a certain mass-production SUV (Sport Utility Vehicle, SUV) manual transmission gear rattle phenomenon were analyzed in this paper. Firstly, vehicle experiments, including experiment conditions, vibration acceleration sensor and microphone arrangements and especial considerations in experiments, were described in detail. Secondly, through time-frequency analysis, broadband characteristics of manual transmission gear rattle noise were identified and vibro-impact of gear rattle occurs in the frequency range of 450~4000Hz on the vehicle idle condition and the creeping condition. Thirdly, based on bandwidth filtering processing of gear rattle noise, subjective assessment experiments by a paired comparison method were carried out.
2017-03-28
Journal Article
2017-01-0389
Carlo Cantoni, Giampiero Mastinu, Massimiliano Gobbi, Federico Ballo, Giorgio Previati
Abstract The durability performance of brake hoses is a crucial issue for such components. Accelerated fatigue testing of brake hoses is necessary for understanding achievable lifetime, actually computation of durability is quite cumbersome due to the many different materials the hoses are made from. Despite SAE standards are available, accelerated testing of brake hoses subject to actual torsional and bending stresses seem important to provide relevant feedback to designers. In this paper, an innovative methodology for assessing the fatigue behavior of brake hoses of road vehicles is proposed. A dynamic testbed is specifically designed and realized, able to reproduce the actual assembly conditions of the hoses fitted into a vehicle suspension. The designed testbed allows to replicate actual loading conditions on the brake hoses by simulating the vertical dynamics and steering of the suspension system together with brake pressure.
2017-03-28
Journal Article
2017-01-0391
Daniel Meyer, Peter Maehling, Thomson Varghese, Jeffery Lewis
Abstract Precise and accurate internal-combustion engine pressure measurements are typically built upon extremely low level piezoelectric sensor signals acquired in the laboratory. In turn, these minute signals must be accurately conditioned using electronic charge amplifiers and then processed for meaningful analysis. Laboratory standard operating procedures often overlook the importance of timely and rigorous calibration of the equipment, or perform them without using sufficient environmental controls. In some facilities, years have been allowed to pass between metrology-quality calibrations, introducing the potential for significant out-of-tolerance conditions and non-compliance when compared to accredited measurement standards.
2017-03-28
Technical Paper
2017-01-1245
Takamitsu Tajima, Hideki Tanaka, Takeo Fukuda, Yoshimi Nakasato, Wataru Noguchi, Yoshikazu Katsumasa, Tomohisa Aruga
Abstract The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
2017-03-14
Journal Article
2017-01-9275
Neng Zhu, Lin Lv, Chengwei Ye
Abstract In vehicles with urea-SCR system, normal operation of the urea-SCR system and engine will be influenced if there are deposits appearing on exhaust pipe wall. In this paper, a commercial vehicle is employed to study the influence factors of deposits through the vehicle road test. The results show that, urea injection rate, temperature and flow field have impacts on the formation of deposits. When decreasing the urea injection rate of calibration status by 20%, the deposit yield would reduce by 32%. If the ambient temperature decreased from 36 °C to 26 °C, the deposit yield would increase by 95%. After optimizing the exhaust pipe downstream of the urea injector by removing the step surface, only a few flow marks of urea droplets are observed on the pipe wall, and no lumps of deposits existing.
2017-01-10
Technical Paper
2017-26-0195
Sachin Kumar Jain, Manasi Joshi, Harshal Bankar, Prashant Kamble, Prasad Yadav, Nagesh Karanth
Abstract The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
2017-01-10
Technical Paper
2017-26-0181
Manish Vyas, Mark Pratley
Abstract There is an increased use of elastomers in the automotive industry for sealing, noise isolation, load dampening, insulation, etc., because of their key properties of elasticity and resilience. Elastomers are used in supercharger application for dampening the torsional fluctuation from the engine, to reduce noise issues. Finite element modeling of elastomers is challenging because of its non-linear behavior in different loading directions. It also undergoes very large elemental deformation (~up to 200%), which results in additional complexities in getting numerical convergence. Finally, it also exhibits viscous and elastic behavior simultaneously (viscoelastic effect) and it undergoes softening with progressive cyclic loading (Mullins effect). The present study deals with the characterization of elastomers for its modeling in commercial finite element software packages and verification of some predicted design parameters with physical testing.
2017-01-10
Technical Paper
2017-26-0072
Moqtik Bawase, M R Saraf
Abstract Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
2017-01-10
Technical Paper
2017-26-0111
MY Raghu, Prashant Sharma
Abstract In recent times diesel powered vehicles are becoming popular due to improved performance and reduced exhaust emission with this the market share of diesel passenger cars expected to approach 60 % over the next few years. In compliance with future emission standards for diesel powered vehicles, it is required to use diesel particulate filters (DPF) along with other exhaust emission control devices. There is a need for more optimized DPF cell structure to collect maximum soot load with low pressure drop and improved exhaust performance from diesel vehicles in Indian driving conditions. In this thesis paper a detailed parametric study have been carried out on different DPF cell structures like Square, Hexagonal and combined cell geometry. The performances of different cell structure has been evaluated for maximum soot loading capacity and regeneration rate, pressure drop, temperature distribution across cell structure.
2017-01-10
Technical Paper
2017-26-0130
Hemant P. Urdhwareshe
Abstract In the recent times, there have been number of cases of failure to pass the COP tests. When a vehicle fails a COP test, it is very embarrassing and expensive for the manufacturer as there is a loss of faith by the society and consumers. It is also painful for the certification agency as well as government. In this context, it is important to quantify and minimize the risk associated with these tests for manufacturers as well as certification agencies. The sampling plan specified in MoRTH / CMVR / TAP-115 is designed to quickly pass vehicles which have very low emissions and quickly reject (fail) vehicles having higher emissions compared to the specified limit. These sampling plans can be classified under Probability Ratio Sequential Tests (PRST).
2017-01-10
Technical Paper
2017-26-0322
Saktheeswaran Kasinathan, Sreenivasa Gupta, Husain Agha, Rajiv Modi
Abstract In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
Viewing 121 to 150 of 15303