Criteria

Text:
Display:

Results

Viewing 91 to 120 of 15355
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
2017-03-28
Technical Paper
2017-01-0893
Marek Tatur, Kiran Govindswamy, Dean Tomazic
Abstract Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. Strip friction methods are used to determine and isolate components in engines and transmissions with the highest contribution to friction losses. However, there is relatively little focus on friction optimization of Front-End-Accessory-Drive (FEAD) components such as alternators and Air Conditioning (AC) compressors. This paper expands on the work performed by other researchers’ specifically targeting in-depth understanding of system design and operating strategy.
2017-03-28
Technical Paper
2017-01-0898
Jongwon Lee, Sedoo Oh, Kyung Sub Joo, Seyoung Yi, Kyoung-Pyo Ha, Seongbaek Joo
Abstract The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
2017-03-28
Technical Paper
2017-01-1259
Eduardo D. Marquez, John Stevenson, Ethan Dietrich, Douglas Nelson, Christopher Flake, Alexander Neblett, Samuel Reinsel
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) housed in a test setup, where the inner chamber is maintained at a given elevated temperature while its exterior housing surfaces are exposed to the room temperature. The two key components of dissimilar metals are assembled through the conventional interference fitting at their interface surfaces to form a friction joint at the room temperature. Due to the difference in the thermal expansion coefficients of two dissimilar materials, the outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises, thus leading to a possible relaxation in joining connection at their interface.
2017-03-28
Technical Paper
2017-01-0449
Yinzhi He, Bin Wang, Zhe Shen, Zhigang Yang, Gunnar Heilmann, Tao Zhang, Guoxu Dong
Abstract Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
2017-03-28
Technical Paper
2017-01-0745
R. Vallinayagam, S. Vedharaj, Yanzhao An, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Bengt Johansson
Abstract This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed.
2017-03-28
Technical Paper
2017-01-1095
Sankar B. Rengarajan, Jayant Sarlashkar, Peter Lobato
Abstract SAE Recommended Practice J1540 [1] specifies test procedures to map transmission efficiency and parasitic losses in a manual transmission. The procedure comprises two parts. The first compares input and output torque over a range of speed to determine efficiency. The second measures parasitic losses at zero input torque over a range of speed. As specified in J1540, efficiency of transmissions is routinely measured on a test-stand under steady torque and speed [2] [3]. While such testing is useful to compare different transmissions, it is unclear whether the “in-use” efficiency of a given transmission is the same as that measured on the stand. A vehicular transmission is usually mated to a reciprocating combustion engine producing significant torque and speed fluctuations at the crankshaft. It is thus a valid question whether the efficiency under such pulsating conditions is the same as that under steady conditions.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
2017-03-28
Technical Paper
2017-01-0004
Norbert Wiechowski, Thomas Rambow, Rainer Busch, Alexander Kugler, Norman Hansen, Stefan Kowalewski
Abstract Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
2017-03-28
Technical Paper
2017-01-0003
Tetsuya Tohdo
Abstract We propose a verification method in the field of automotive control systems integrating the concepts of Formal Methods with testing, aiming at efficient and reliable software development. Although Formal Methods are believed to provide the benefits of their rigorous nature and their inherent capability of automation, only limited cases are known where Formal Methods were applied in system and software development, in practice, due to two major difficulties: appropriate abstraction in modeling and scalability in automated reasoning. Focusing on testing on the other hand, there is the difficulty of selecting reasonable set of tests for given verification objectives. In order to overcome these difficulties, our approach is to present verification criteria for testing to appropriately cover the property with the help of the Formal Method concepts.
2017-03-28
Technical Paper
2017-01-0186
Cory J. Kreutzer, John Rugh, Jeff Tomerlin
Abstract Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
2017-03-28
Technical Paper
2017-01-0392
Dae-Un Sung, James Busfield, Yong Hyun Ryu
The vehicle elastomeric components such as engine mounts could be aged and degraded by environmental loads such as thermal and mechanical loads during long term usage by customers. These make the degradation of vehicle driving performance comparing with a new condition. In this study, the main cause of NVH (Noise, Vibration and Harshness) degradation of a used vehicle was analyzed. It could be identified by the analysis of vibration insulating property changes of elastomeric components. The properties changes of aged engine mounts were analyzed and compared with initial properties. The accelerated laboratory ageing test mode was developed for simulating the degradation of engine mounts by thermal load analysis. Moreover, parametric studies were carried out to identify the robust engineering design technique. The engineering design parameters of elastomers such as volume, thickness and mechanical loading types were identified to improve the degradation phenomenon.
2017-03-28
Technical Paper
2017-01-1356
Rainer Neumann
Abstract In the last years we recognize a big amount of innovative solutions in the field of automotive lighting and especially in front lighting systems. The major target to improve the light performance and to make driving at night safe is most important. The measure for the performance rating and the ability to compare different systems with a technology neutral process seems to be quite difficult. The legislation is looking for a simplification with clearly defined parameters for the future. Experimental test series recently published causing a lot of discussions as the sensitivity of the aiming of the headlamps can cause completely different performance test results. The paper will report on a study with various production vehicles, all in the same way initially aimed and prepared for all type of technologies.
2017-03-28
Technical Paper
2017-01-0865
Mark Walls, Michael Joo, Michael Ross
Abstract Liquefied petroleum gas (LPG) is commonly known as autogas when used as a fuel for internal combustion engines. In North America, autogas primarily consists of propane, but can contain small amounts of butane, methane and propylene. Autogas is not a new fuel for internal combustion engines, but as engine technology evolves, the properties of autogas can be utilized to improve engine and vehicle efficiency. With support from the Propane Education & Research Council (PERC), Southwest Research Institute (SwRI) performed testing to quantify efficiency differences with liquid autogas direct injection in a modern downsized and boosted direct-injected engine using the production gasoline fuel injection hardware. Engine dynamometer testing demonstrated that autogas produced similar performance characteristics to gasoline at part load, but could be used to improve brake thermal efficiency at loads above 9 bar Brake Mean Effective Pressure (BMEP).
2017-03-28
Technical Paper
2017-01-0402
Zhigang Zhang, Shi Xiaohui, Ye Bin
Abstract Based on the formation mechanism of engaging force of clutch, the engagement was divided into four stages: idle stage, cushion spring stage, diaphragm spring stage and locked stage. The mechanism of transmitted torque in each stage was analyzed and the transmitted torque model of clutch was deduced. Multi-load step analysis method based on finite element was used to analyze the coupling load-deformation characteristics of diaphragm spring and cushion spring in engagement, and the change laws of engaging force, diaphragm spring force and release bearing force were achieved and their coupling interaction were studied. And then change of friction coefficient of clutch with oscillating temperature was measured on friction test rig, and effect of temperature on transmitted torque was further discussed. Finally, simulation results of transmitted torque were validated by the experiment. Results indicate that the transmitted torque in clutch engagement has a nonlinear characteristic.
2017-03-28
Technical Paper
2017-01-0623
Zun Wang, Yi Zhang, Christophe lenormand, Mohammed Ansari, Manuel Henner
Abstract Radiator thermal cycle test is a test method to check out the robustness of a radiator. During the test, the radiator is going through transient cycles that include high and low temperature spikes. These spikes could lead to component failure and transient temperature map is the key to predict high thermal strain and failure locations. In this investigation, an accurate and efficient way of building a numerical model to simulate the transient thermal performance of the radiator is introduced. A good correlation with physical test result is observed on temperature values at various locations.
2017-03-28
Technical Paper
2017-01-0764
Gabriele Di Blasio, Giacomo Belgiorno, Carlo Beatrice
Abstract The paper reports the results of an experimental campaign aimed to assess the impact of the compression ratio (CR) variation on the performance and pollutant emissions, including the particle size spectrum, of a single cylinder research engine (SCE), representatives of the engine architectures for automotive application, operated in dual-fuel methane-diesel mode. Three pistons with different bowl volumes corresponding to CR values of 16.5, 15.5 and 14.5 were adopted for the whole test campaign. The injection strategy was based on two injection pulses per cycle, as conventionally employed for diesel engines. The test methodology per each CR included the optimization of both 1st injection pulse quantity and intake air mass flow rate in order to lower as much as possible the unburned methane emissions (MHC).
2017-03-28
Technical Paper
2017-01-0536
William Goodwin, Claudio Mancuso, Nicolas Brown
This paper describes how distributive computing along with statistical subsystem simulation can be applied to produce near production ready embedded vehicle software and calibrations. Coupling distributive computing and statistical simulation was first employed over a decade ago at General Motors to design and analyze propulsion subsystem hardware. Recently this method of simulation has been enhanced extending its capabilities to both test embedded vehicle code as well as develop calibrations. A primary advantage of this simulation technique is its ability to generate data from a statistically significant population of subsystems. The result is the acquisition of an optimal data set enabling the development of a robust design now including both embedded code and calibrations. Additionally it has been shown that there are significant economic advantages in terms of time and cost associated with this type of development when compared to traditional method.
2017-03-28
Technical Paper
2017-01-0352
Zhigang Wei, Limin Luo, Richard Voltenburg, Mark Seitz, Jason Hamilton, Robert Rebandt
Durability and reliability assessment of stress raisers is difficult in testing because the true deformation at a stress raiser often cannot be directly measured. Many approximate engineering approaches have been developed over the last decades, but further fundamental understanding of the problems and the development of more effective engineering methods are still strongly demanded. In this paper, several new concepts and engineering testing approaches are developed and introduced with the emphasis on thermal-fatigue assessment of welded structures.
2017-03-28
Technical Paper
2017-01-0544
Philipp Mayr, Gerhard Pirker, Andreas Wimmer, Markus Krenn
Abstract It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
2017-03-28
Technical Paper
2017-01-0138
Chris Lim, Peter Ireland, Nicholas Collett
Abstract The analysis of thermal fields in the underhood region is complicated by the complex geometry and the influence of a multitude of different heat sources. This complexity means that running full CFD analyses to predict the thermal field in this region is both computationally expensive and time consuming. A method of predicting the thermal field using linear superposition has been developed in order to analyse the underhood region of a simplified Formula One race car, though the technique is applicable to all vehicles. The use of linear superposition allows accurate predictions of the thermal field within a complex geometry for varying boundary conditions with negligible computational costs once the initial characterisation CFD has been run. A quarter scale, rear end model of a Formula One race car with a simplified internal assembly is considered for analysis, though the technique can also be applied to commercial and industrial vehicles.
2017-03-28
Technical Paper
2017-01-0145
Edward Palmer, Wilko Jansen
Abstract In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
2017-03-28
Technical Paper
2017-01-0174
Ravi Rungta, Noori Pandit
Abstract A simple and rapid immersion type corrosion test has been successfully developed that discriminates corrosion performance in condensers from various suppliers and with differing manufacturing processes. The goal is to develop a test specification that will be included in the Ford corrosion specification for condensers so that condensers received from various suppliers may be evaluated rapidly for their relative corrosion performance to each other. Sections from condensers from Supplier A (tube is silfluxed), Supplier B (tube is zinc arc sprayed), and Supplier C (bare folded tube with no zinc for corrosion protection) were tested in 2% v/v hydrochloric acid for 16, 24 and 48 hours. The results showed that in terms of corrosion performance, zinc arc sprayed Supplier B condenser performed the worst while Supplier C condenser performed the best with Supplier A in between.
2017-03-28
Technical Paper
2017-01-0328
Yunkai Gao, Genhai Wang, Jingpeng Han
Abstract The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
2017-03-28
Technical Paper
2017-01-1147
Hyunjun Kim, Jingeon Kang, Dongsuk Kum
Abstract Input- and output-split hybrids using a single planetary gear (PG) can provide high fuel economy, but they tend to suffer from low acceleration performance. In order to improve their acceleration performance, speed reduction (multiplication) gears (SRG/SMG) have often been employed in various mass-produced split hybrids. In fact, adding one SRG (SMG) to input- or output-split hybrids can improve not only the acceleration performance, but also the fuel economy. Nevertheless, the full potentials of using SRGs (SMGs) have not yet been thoroughly investigated because the design space of input- and output-split configurations using one SRG (SMG) is huge; 432 configurations can be generated using two PGs where one PG is used as an SRG/SMG. Thus, in order to investigate the impacts of SRG (SMG) within a reasonable time, an efficient analysis procedure is required.
2017-03-28
Technical Paper
2017-01-1237
Ahmad Arshan Khan, Michael J. Kress
Abstract For high performance motor controls applications such as electric vehicles, accurate motor parameter knowledge is required. Motor parameters like d-axis inductance, q-axis inductance, resistance and permanent magnet flux linkage are difficult to obtain and measure directly. These four parameters can be reduced to three parameters resistance, d-axis and q axis flux linkage. In this paper, a new scheme is proposed to approximate d-axis and q-axis flux linkage using measured torque, dq-axis measured current, and dq-axis voltage commands to the inverter. d-axis and q-axis flux linkages are estimated over a range of d-axis and q-axis currents that fully map the desired motor operation region.
2017-03-28
Technical Paper
2017-01-1239
Naoya Take, Takuya Kadoguchi, Masao Noguchi, Kimihiro Yamanaka
Abstract Power modules are used to operate three-phase alternating current motors in hybrid vehicles and electric vehicles. Good fuel efficiency and high power density are required in the field of hybrid vehicles. To achieve this goal, the miniaturization of the power module will be necessary. This trend may make a current density, which is created by insulated gate bipolar transistors (IGBTs) and free wheel diodes (FWDs), higher in power modules. Solder is often used as the joint material of power modules. It is known that a current density larger than 10 kA/cm2 causes solder electromigration. This phenomenon may cause delamination of the joint area. In addition, the ambient temperature has an influence on electromigration. The temperature of an engine compartment is high, so it is likely to cause electromigration. However, the current density of the double-sided cooling power modules in 2007 with solder joint is lower than 0.4 kA/cm2, and this value is lower than 10 kA/cm2.
2017-03-28
Technical Paper
2017-01-1245
Takamitsu Tajima, Hideki Tanaka, Takeo Fukuda, Yoshimi Nakasato, Wataru Noguchi, Yoshikazu Katsumasa, Tomohisa Aruga
Abstract The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Viewing 91 to 120 of 15355