Criteria

Text:
Display:

Results

Viewing 61 to 90 of 15290
2017-03-28
Technical Paper
2017-01-0392
Dae-Un Sung, James Busfield, Yong Hyun Ryu
The vehicle elastomeric components such as engine mounts are aged and degraded by environmental loads during long term usage. These make the degradation of vehicle driving performance comparing with a new condition. In this study, the degradation of NVH (Noise, Vibration and Harshness) of used vehicles was analyzed. The main cause could be identified by the analysis of elastomers’ vibration insulation property changes. The properties changes of aged engine mounts were analyzed and compared with initial properties. The accelerated laboratory aging test mode was developed for simulating the degradation of engine mounts. Moreover, parametric study was carried out. The engineering design parameters of elastomers such as volume, thickness and loading types were identified to improve the thermal aging phenomenon.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
This paper proposes the Off-cycle credit alternative test methodology for Semi-transparent solar panel integrated on Automobile roof glass to achieve the CO2 credits from the Environmental Protection Agency (EPA) & the National Highway Traffic Safety Administration (NHTSA). Manufactures offer the option to put solar cells on the roof of a vehicle for reducing cabin ambient temperature. However, Hyundai Motors develops the semi-transparent solar roof with a controller to provide electric energy for vehicles. This electrical energy cannot be accounted for on the current EPA cycles either the two cycle test or the five-cycle test. Therefore, the manufacture has to establish the methodology based on solar system for vehicles. In order to improve the efficiency of our solar system and to calculate reduced CO2 emission, we studied useable solar energy in driving condition other than peak power in standard test condition(@ 25℃, 1Sun).
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) whose inner chamber is maintained at a given temperature of 150 degree C while its exterior housing surfaces are exposed to the room temperature. Two key components of dissimilar metals are assembled, as usual, at the room temperature, through the conventional interface fitting, to form a secured joint by the means of internal friction forces so that torque loads are capable to be transmitted. Due to the dissimilar materials and resulting difference in their thermal expansion coefficients, an outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises. This work is indented to demonstrate that using a combined thermal and structural FEA can play a pivoting role in designing not only a robust product, but also a vital test procedure that can really captures how the product functions.
2017-03-28
Technical Paper
2017-01-0536
William Goodwin, Claudio Mancuso, Nicolas Brown
The development of automotive embedded software and calibrations presently involves an expensive development cycle in terms of both time and cost. A primary reason is the associated expense and time require to apply the various technologies needed for software testing and calibration development. Early in the design cycle software-in-the-loop (SIL) and Hardware-in-the-Loop (HIL) systems are typically employed. Later stages use costly engine and vehicle hardware as part of the software test and calibration development process. During this phase propulsions systems may initially utilize dynamometers and eventually migrate to vehicle level testing. All these technologies contribute to large budgets and design times required for embedded software and calibration development.
2017-03-28
Technical Paper
2017-01-0275
N. Obuli Karthikeyan, N. Prajitha, P. Sethu Madhavan
As the technology gets upgraded every day, automotive manufacturers are also paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life without any failure. To develop a reliable product, functional and durability testing is not only sufficient rather it should undergo various types of stresses at different levels, to identify its potential modes of failure. By reliability testing, most of the failure modes of a component can be analyzed and eliminated in the design stage itself, prior to production. In this paper, electrical relay of a commercial vehicle was taken up for study to analyze the causes for field failure and to estimate its reliable life in the customer operating conditions. Few of the field failure samples were tested for its performance characteristics with typical testing protocol and strip out experiment was carried out to analyze the various failure modes.
2017-03-28
Technical Paper
2017-01-0276
Lev Klyatis
This paper considers the situation in the laboratory testing: different stress types and accelerated testing, including accelerated reliability/durability testing, accelerated life testing, reliability testing, proving grounds, vibration, temperature, voltage, humidity, and others. In comparison with field situation, most of these testing simulate only one or part of the field input influences. One uses often not accurately the theory of physics-of-degradation process or failures for comparison of the field results with laboratory results. Thos situation will be considered with practical examples. It will be demonstrated that often used laboratory testing does not offer the possibility for successful prediction of product performance during service life As a result, there are many complaints, recalls, less profit than was predicted during design and manufacturing. It will be shown how one can improve this situation..
2017-03-28
Technical Paper
2017-01-0324
Anbo Pan, Ashley Walsh, Mark Dearth, Xiao Qing Zhang
A research project was carried out to validate the target compounds that lead to customers’ complaints about interior cabin odor. The goal was to understand what the threshold sensitivity of the customer might be, in order to determine where to set internal targets for customer satisfaction. Compounds called out by the GB/T27630-2011 and TUV Rheinland Toxproof standards that have odor descriptions, odor thresholds and irritation levels were studied, and a design of experiments (DOE) was conducted. Acetaldehyde, toluene, acetone and butyraldehyde were used to conduct the odor study by reconstituting their concentration in vehicles. It is concluded that aromatics, aldehydes, and ketones have a direct relationship to odor concerns.
2017-03-28
Technical Paper
2017-01-0321
Silvio César Bastos
This case study describes improvements to the pin grinding and superfinishing processes for a 900 mm long, 60 kg forged crankshaft used in a six cylinder diesel engine. Machining vibrations caused by the eccentricity of the mass of the pins in relation to the journals increase the difficulty of achieving a stable and capable process. Through analysis of the crankshaft and connecting rod assembly, an opportunity was identified to improve the pin profile along its 30 mm length. Based on measurements, it was found that, due to variations on the order of five microns, the pin profile (nominally linear) may vary between concave or convex shape. Process improvements were focused on the form grinding profile. The amplitude of the grinding profile was established between zero and five microns tending to convex shape.
2017-03-28
Technical Paper
2017-01-0320
Xiao Qing Zhang, Yuxian Han, Emma Huang, An Bo Pan, Ashley Walsh, Xinhua Zhang, Xiyang Yu, Lisong Wang
With the development of the automobile industry, customer expectations have also developed. Increasing expectations for handing, performance, comfort level, and aesthetics lead automobile manufacturers to create more and more innovative ideas and applications. However, it also brings the risk of some disadvantages if material or component durability does not receive appropriate consideration. To increase the aesthetics of vehicle interiors, leather material is widely applied for seats, steering wheels, instrument panels, door panels, and other components. To increase the drivers’ comfort level, there is always a soft pad layer or supported foam material applied under the leather in the steering wheel. This paper will describe a failure mode that occurs when dioctyl phthalate migrates from the soft pad layer into the leather surface, causing the leather coating to peel off.
2017-03-28
Technical Paper
2017-01-0331
Qiuren Chen, Haiding Guo, Katherine Avery, Xuming Su, HongTae Kang
Fatigue crack growth tests have been carried out to investigate the mixed mode fatigue crack propagation behavior of an automotive structural adhesive BM4601. The tests were conducted a compound CMM (Compact Mixed Mode) specimen under load control with 0.1 R ratio and 3Hz frequency. A long distance moving microscope was employed during testing to monitor and record the real time length of the fatigue crack in the adhesive layer. The strain energy release rates of the crack under different loading angles, crack lengths and loads were calculated by finite element method. The pure mode I and mode II tests show that an equal value of mode I strain energy release rate results in over ten times higher FCGR (Fatigue Crack Growth Rate) than the mode II stain energy release rate does. The mixed mode tests results show that under a certain loading angle, the mixed mode FCGR is changed by changing the load, which is contrary to the find in pure mode I and mode II tests.
2017-03-28
Technical Paper
2017-01-0328
Yunkai Gao, Genhai Wang, Jingpeng Han
Based on the 4-channel road simulation bench, a scheme of fatigue bench test which was suitable for cab with frame and suspension was designed with the method of multi-body dynamics simulation and physical iteration. Large load and large displacement signals above the suspension can be loaded on the test bench, and it is effective for the fatigue bench test of the same type. The multi-body dynamics model was built according to the durability specifications of cab assembly, and the feasibility of the scheme was proved through the verification for the fixture and virtual iteration analysis. The test bench with linear guide and spherical joint was built to simulate the actual condition of cab on suspension based on the results of the road load signal analysis and multi-body dynamics analysis. The acceleration signal beside the suspension was taken as a target signal and the drive signal of cylinders was obtained through physical iteration.
2017-03-28
Technical Paper
2017-01-0395
Xin Xie, Danielle Zeng, Boyang Zhang, Junrui Li, Liping Yan, Lianxiang Yang
Vehicle front panel is an interior part which have a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
2017-03-28
Technical Paper
2017-01-0260
Yuanying Wang, Heath Hofmann, Denise Rizzo, Scott Shurin
The increasing electrification of military vehicles is also increasing the need for accurate models of electric motors and generators for use in powertrain design. In particular, there is a strong need to accurately model the internal temperatures of these machines. Thus, an accurate yet computationally-efficient thermal model is required. In previous work, a technique capable of dramatically reducing the order of a 3-dimensional finite-element (FE) thermal conduction model was developed. The developed model has acceptable accuracy but is orders of magnitude faster than the FE model. This new model was validated by a locked-rotor test with close agreement, but the results are unsatisfactory when the rotor is spinning, since the resulting heat convection behavior is not precisely modeled. This paper will present a computationally-efficient model of heat convection due to air circulation produced by rotor motion.
2017-03-28
Technical Paper
2017-01-0352
Zhigang Wei, Limin Luo, Richard Voltenburg, Mark Seitz, Jason Hamilton, Robert Rebandt
Thermal-fatigue performance assessment of components and systems is challenging due to the inherent complexities in mechanical and thermal loadings, material inhomogeneity, manufacturing inconsistency etc. Among all of possible failure modes, the fatigue and thermal-fatigue failures at stress raisers are of particular importance because they consist of the majority of failure modes in vehicle components and systems. Stress raisers in components include the welds, notches, and other material and geometry discontinuities. Durability and reliability assessment of stress raisers is difficult in testing because the true deformation at a stress raiser often cannot be directly measured. Many approximate engineering approaches have been developed over the last decades, but further fundamental understanding of the problems and the development of more effective engineering methods are still strongly demanded.
2017-03-28
Journal Article
2017-01-0647
Bradley Denton, Christopher Chadwell, Raphael Gukelberger, Terrence Alger
The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
2017-03-28
Journal Article
2017-01-0014
Takashi Nomura, Kazuma Kawai
Abstract The EMI, electromagnetic interference, is tested for automobiles and components by the method defined in the international standard, CISPR 25. Regarding the automobile test, the EMI from the component installed in the automobile is measured by the antenna of an automobile. On the other hand on the component test, the EMI from the component is measured by a mono-pole antenna set forward of the component. However, components sometimes fail the automobile test even if its passed the component test due to the difference of the method. In this case, the component has to be designed again to pass the automobile test. Therefore, the prediction method of the automobile test result is required. In this paper, we tried to modify the standard component test configuration to predict the automobile test result for a fuel pump system in AM frequency band.
2017-03-28
Journal Article
2017-01-1170
Tong Zhang, Chen Wang, Wentai Zhou, Huijun Cheng, Haisheng Yu
Abstract Because a compound power-split transmission is directly connected to the engine, dramatic fluctuations in engine output torque result in strong jerks and torque losses when the hybrid vehicle is in mode transition from electric drive mode to hybrid drive mode. In order to enhance ride comfort and reduce the output torque gap during mode transition process, a brake clutch assisted coordinated control strategy was developed. Firstly, the dynamic plant model of the power-split vehicle including driveline model, engine ripple torque and brake clutch torque was deduced. Secondly, the brake clutch assisted mode transition process was analyzed, and the output torque capability was compared between cases of both brake clutch assisted and unassisted mode transition process. Thirdly, a coordinated control strategy was designed to determine the desired motor torque, brake clutch torque, engine torque, and the moment of fuel injection.
2017-03-28
Journal Article
2017-01-1193
Yongcai Wang, Rajaram Subramanian, Sarav Paramasivam, George Garfinkel
Abstract Mechanical shock tests for lithium metal and lithium-ion batteries often require that each cell or battery pack be subjected to multiple shocks in the positive and negative directions, of three mutually perpendicular orientations. This paper focuses on the no-disassembly requirement of those testing conditions and on the CAE methodology specifically developed to perform this assessment. Ford Motor Company developed a CAE analysis method to simulate this type of test and assess the possibility of cell dislodging. This CAE method helps identify and diagnose potential failure modes, thus guiding the Design Team in developing a strategy to meet the required performance under shock test loads. The final CAE-driven design focuses on the structural requirement and optimization, and leads to cost savings without compromising cell or pack mechanical performance.
2017-03-28
Journal Article
2017-01-1216
Edward C. Fontana, Rick Barnett, Robert Catalano, James Harvey, Jiacheng He, George Ottinger, John Steel
Abstract Electric cars can help cities solve air quality problems, but drivers who live in apartments have no convenient way to charge daily, absent the well-controlled private garages where most electric vehicles (EVs) are currently charged each night. Environmentally robust, hands-free, inductive chargers would be ideal, but energy efficiency suffers. We asked whether the precise parking alignment provided by self-driving cars could be used to provide convenient inductive charging with improved charging efficiencies. To answer this question, we split an inductor-inductor-capacitor (LLC) battery charger at the middle of the isolation transformer. The power factor correction, tank elements, and transformer primary windings are stationary, while the transformer secondary, rectifiers, and battery control logic are on the vehicle. The transformer is assembled each time the EV parks.
2017-03-28
Journal Article
2017-01-1154
Jimmy Kapadia, Daniel Kok, Mark Jennings, Ming Kuang, Brandon Masterson, Richard Isaacs, Alan Dona, Chuck Wagner, Thomas Gee
Abstract The automotive industry is rapidly expanding its Hybrid, Plug-in Hybrid and Battery Electric Vehicle product offerings in response to meet customer wants and regulatory requirements. One way for electrified vehicles to have an increasing impact on fleet-level CO2 emissions is for their sales volumes to go up. This means that electrified vehicles need to deliver a complete set of vehicle level attributes like performance, Fuel Economy and range that is attractive to a wide customer base at an affordable cost of ownership. As part of “democratizing” the Hybrid and plug-In Hybrid technology, automotive manufacturers aim to deliver these vehicle level attributes with a powertrain architecture at lowest cost and complexity, recognizing that customer wants may vary considerably between different classes of vehicles. For example, a medium duty truck application may have to support good trailer tow whereas a C-sized sedan customer may prefer superior city Fuel Economy.
2017-03-28
Journal Article
2017-01-1249
Masahiro Seguchi
Abstract Compact, high efficiency and high reliability are required for an xEV motor generator. IPM rotors with neodymium magnets are widely applied for xEV motors to achieve these requirements. However, neodymium magnet material has a big impact on motor cost and there is supply chain risk due to increased usage of these rare earth materials for future automotive xEV’s. On the other hand, a wound-field rotor does not need magnets and can achieve equivalent performance to an IPM rotor. However, brushes are required in order to supply current to the winding coil of the rotor. This may cause insulation issues on xEV motors which utilize high voltage and high currents. Therefore, it is suggested to develop a system which supplies electric energy to the rotor field winding coil from the stator without brushes by applying a transformer between stator coil and rotor field winding. Specifically, add auxiliary magnetic poles between each field winding pole and wind sub-coils to these poles.
2017-03-28
Technical Paper
2017-01-1679
Felix Martin, Michael Deubzer
Abstract In the automotive industry a steady increase in the number of functions driven by innovative features leads to more complex embedded systems. In the future even more functions will be implemented in the software, especially in the areas of automatic driving assistance functions, connected cars, autonomous driving, and mobility services. To satisfy the increasing performance requirements, multi- and many-core controllers are used, even in the classic automotive domains. This case study has been conducted in the steering system domain, but the results can be applied to other areas as well. Safety critical functions of classic automotive domains must fulfill strict real-time requirements to avoid malfunctions, which can potentially endanger people and the environment. For this reason, ISO 26262 requires verification of the performance and timing behavior of system critical functions.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Abstract Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
2017-03-28
Journal Article
2017-01-0989
Jennifer H. Zhu, Christopher Nones, Yan Li, Daniel Milligan, Barry Prince, Mark Polster, Mark Dearth
Abstract Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
2017-03-28
Technical Paper
2017-01-1042
Eric J. Passow, Paras Sethi, Max Maschewske, Jason Bieneman, Kimm Karrip, Paul Truckel
Abstract Current market demands in conjunction with increasingly stringent emission legislation have vehicle manufactures striving to improve fuel economy and reduce CO2 emissions. One way to meet these demands is through engine downsizing. Engine downsizing allows for reduced pumping and frictional losses. To maintain acceptable drivability and further increase efficiency, power density increase through the addition of boosting is employed. Furthermore, efficiencies have been realized through the use of high gear count transmissions, providing an opportunity for manufactures to effectively down speed the engine whilst still achieving the desired drivability characteristics. As a result of these efficiency improvements, gasoline turbo charged direct injected (GTDI) engines are developed for and tend to operate in low engine speed, high torque conditions .
2017-03-28
Technical Paper
2017-01-1035
Xingyu Xue, John Rutledge
Abstract Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response.
2017-03-28
Technical Paper
2017-01-0764
Gabriele Di Blasio, Giacomo Belgiorno, Carlo Beatrice
Abstract The paper reports the results of an experimental campaign aimed to assess the impact of the compression ratio (CR) variation on the performance and pollutant emissions, including the particle size spectrum, of a single cylinder research engine (SCE), representatives of the engine architectures for automotive application, operated in dual-fuel methane-diesel mode. Three pistons with different bowl volumes corresponding to CR values of 16.5, 15.5 and 14.5 were adopted for the whole test campaign. The injection strategy was based on two injection pulses per cycle, as conventionally employed for diesel engines. The test methodology per each CR included the optimization of both 1st injection pulse quantity and intake air mass flow rate in order to lower as much as possible the unburned methane emissions (MHC).
2017-03-28
Technical Paper
2017-01-0123
Saiful Bari
Abstract In general, diesel engines have an efficiency of about 35% and hence, a considerable amount of energy is expelled to the ambient air. In water-cooled engines, about 25%, 33% and 7% of the input energy are wasted in the coolant, exhaust gas, and friction, respectively. The heat from the exhaust gas of diesel engines can be an important heat source to provide additional power and improve overall engine efficiency. Studies related to the application of recoverable heat to produce additional power in medium capacity diesel engines (< 100 kW) using separate Rankine cycle are scarce. To recover heat from the exhaust of the engine, an efficient heat exchanger is necessary. For this type of application, the heat exchangers are needed to be designed in such a way that it can handle the heat load with reasonable size, weight and pressure drop. This paper describes the study of a diesel generator-set attached with an exhaust heat recovery system.
2017-03-28
Technical Paper
2017-01-0134
Jan Eller, Heinrich Reister, Thomas Binner, Nils Widdecke, Jochen Wiedemann
Abstract There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
2017-03-28
Technical Paper
2017-01-0138
Chris Lim, Peter Ireland, Nicholas Collett
Abstract The analysis of thermal fields in the underhood region is complicated by the complex geometry and the influence of a multitude of different heat sources. This complexity means that running full CFD analyses to predict the thermal field in this region is both computationally expensive and time consuming. A method of predicting the thermal field using linear superposition has been developed in order to analyse the underhood region of a simplified Formula One race car, though the technique is applicable to all vehicles. The use of linear superposition allows accurate predictions of the thermal field within a complex geometry for varying boundary conditions with negligible computational costs once the initial characterisation CFD has been run. A quarter scale, rear end model of a Formula One race car with a simplified internal assembly is considered for analysis, though the technique can also be applied to commercial and industrial vehicles.
Viewing 61 to 90 of 15290