Criteria

Text:
Display:

Results

Viewing 1 to 30 of 15349
2017-10-08
Technical Paper
2017-01-2354
Dave Horstman, John Sparrow
Due to recent legislation on CO2 emissions, Heavy Duty OEM’s and their suppliers have had an increased interest in improving vehicle fuel economy. Many aspects are being investigated including vehicle aerodynamics, tire rolling resistance, waste heat recovery, engine fuel efficiency, and many others. Crankcase lubricants offer a cost-effective mechanism to reduce engine friction and increase engine fuel efficiency. The potential gains realized by optimized fuel-efficient lubricants are relatively small, on the order of 1-3%. Therefore, in order to develop these lubricants, formulators must have a robust, repeatable, and realistic test method for differentiation. To address this need, Intertek has been involved with developing fuel economy tests for many years, starting with what became the Sequence VI test for passenger car lubricants in the early 1990’s. Most recently, Intertek has helped develop different FE programs to support the MD and HD diesel industry.
2017-10-08
Technical Paper
2017-01-2361
David R. Lancaster
The auto industry today is a global industry that must conform to local emissions and fuel consumption regulation in virtually all markets. These regulations apply different methodologies to different test cycles. This variation in methodologies and test cycles makes direct comparison of standards difficult. This paper compares the NEDC, WLTC and US EPA driving cycles by examining the tractive energy requirements of vehicles from the 2017 US fleet on each of the cycles. In addition, the mass and footprint data from those vehicles are used to compute the CO2 standards for each vehicle under European, US and Chinese standards.
2017-10-08
Technical Paper
2017-01-2404
Douglas Ball, David Lewis, David Moser, Sanket Nipunage
Federal Test Procedure (FTP) emissions were measured on a 4 cylinder 2.4L Malibu PZEV vehicle with 10 and 30ppm sulfur fuel while varying the PGM (Platinum Group Metals) of the close-coupled and under floor converters. Base CARB PH-III certification fuel was used. Three consecutive FTP’s were used to measure the impact of fuel sulfur and catalyst PGM loading combinations. In general, reducing fuel sulfur and increasing catalyst PGM loadings decreased FTP emissions. It is estimated that a fuel sulfur change from 30 to 10 ppm may save $100 in catalyst system PGM.
2017-10-08
Technical Paper
2017-01-2349
Sarita Seth, Swamy Maloth, Prashant Kumar, Bhuvenesh Tyagi, Lokesh Kumar, Rajendra Mahapatra, Sarita Garg, Deepak Saxena, R Suresh, SSV Ramakumar
Automobile OEMs are looking for improving fuel economy of their vehicles by reducing weight, rolling resistance and improving engine and transmission efficiency apart from the aerodynamic design. Fuel economy may be improved by using appropriate low viscosity and use of friction reducers (FRs) in the engine oils. The concept of high viscosity index is being used for achieving right viscosity at required operating temperatures. In this paper performance properties of High Viscosity Index engine oils have been compared with conventional VI engine oils. Efforts has been made to check the key differentiation in oil properties and finally into oil performance w.r.t. low temperature fluidity, high temperature high shear viscosity/deposits, friction behavior, oxidation performance in bench tribological /engine/chassis dyno tests. Three candidates of SAE 0W-30 grade oil with ACEA C2/API SN credentials have been chosen using various viscosity modifiers.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Zhi Ning, Chia-Fon Lee, Han Wu
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2332
Tamara Ottenwaelder, Stefan Pischinger
In order to reduce the consolidated CO2 emission balance stemming from the operation of internal combustion engines, application of new alternative fuels out of renewable sources can deliver a major contribution in the future. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin Wang, Xiongcai Zou, Zhiming Zhang, Wenlong Zhang, Shemin Zhang, Tao Chen, Yuhuang Cao, Yuanda Chen
In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is in adopted in one three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. The global model include cylinder head, block, turbocharger, and catalyst components.
2017-10-08
Technical Paper
2017-01-2294
Julien Gueit, Jerome Obiols
Abstract In order to be ever more fuel efficient the use of Direct Injection (DI) is becoming standard in spark ignition engines. When associated with efficient turbochargers it has generated a significant increase in the overall performance of these engines. These hardware developments lead to increased stresses placed upon the fuel and the fuel injection system: for example injection pressures increased up to 400 bar, increased fuel and nozzle temperatures and contact with the flame in the combustion chamber. DISI injectors are thus subjected to undesirable deposit formation which can have detrimental consequences on engine operation such as reduced power, EOBD (Engine On Board Diagnostics) issues, impaired driveability and increased particulate emissions. In order to evaluate the sensitivity of DI spark ignition engines to fuel-related injector deposit formation, a new engine test procedure has been developed.
2017-10-08
Journal Article
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-10-08
Journal Article
2017-01-2341
Kongsheng Yang, Kristin A. Fletcher, Jeremy P. Styer, William Y. Lam, Gregory H. Guinther
Countries from every region in the world have set aggressive fuel economy targets to reduce greenhouse gas emissions. To meet these requirements, automakers are using combinations of technologies throughout the vehicle drivetrain to improve efficiency. One of the most efficient types of gasoline engine technologies is the turbocharged gasoline direct injection (TGDI) engine. The market share of TGDI engines within North America and globally has been steadily increasing since 2008. TGDI engines can operate at higher temperature and under higher loads. As a result, original equipment manufacturers (OEMs) have introduced additional engine tests to regional and OEM engine oil specifications to ensure performance of TGDI engines is maintained. One such engine test, the General Motors turbocharger coking (GMTC) test (originally referred to as the GM Turbo Charger Deposit Test), evaluates the potential of engine oil to protect turbochargers from deposit build-up.
2017-10-08
Journal Article
2017-01-2298
Charles S. Shanahan, S. Scott Smith, Brian D. Sears
Abstract The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
2017-10-08
Journal Article
2017-01-2348
Michael Clifford Kocsis, Peter Morgan, Alexander Michlberger, Ewan E. Delbridge, Oliver Smith
Increasingly stringent fuel economy and emissions regulations around the World have forced the further optimization of nearly all vehicle systems. Many technologies exist for improvement in fuel economy; however, only a smaller sub-set are commercially feasible due to cost of implementation. One area that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Generally speaking, the impact of chemical additives such as friction modifiers (FMs) is to reduce friction in tribocouples which experience metal-to-metal contact. These conditions commonly occur in valvetrain contacts and between the piston rings and cylinder bore at Top Dead Center (TDC).
2017-09-23
Technical Paper
2017-01-1992
Qin Xia, Jianli Duan, Feng Gao, Tao Chen, Cai Yang
Abstract ADAS must be tested thoroughly before they can be deployed for series production. Comparing with road and field test, bench test has been widely used owing to its advantages of less labor costs, more controllable scenarios, etc. However, there is no satisfied systematic approach to generate high-efficiency and full-coverage test scenarios automatically because of its integration of human, vehicle and traffic. Most of the test scenarios generated by the existing methods are either too simple or too few to be able to achieve full coverage of requirements. Besides, the cost is high when the ET method is used. To solve the aforementioned problems, an automatic test scenario generation method based on complexity for bench test is presented in this paper. Firstly, considering the fact that the device is easier to malfunction under complex cases, an index measuring the complexity of test case is proposed by using the method of AHP.
2017-09-23
Technical Paper
2017-01-1993
Daoyuan Sun, Xiaofei Pei, Xu Hu, Hao Pan, Bo Yang
Abstract This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
2017-09-19
Technical Paper
2017-01-2150
Joshua Cemenska, Todd Rudberg, Michael Henscheid, Andrew Lauletta, Bradley Davis
In AFP manufacturing systems a large portion of total production time is consumed by inspection. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems are now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Expectations will be set for the accuracy for both ply boundary and lap/gap measurements. The time and resource cost of development and integration will also be discussed.
2017-09-19
Technical Paper
2017-01-2048
Bryan Shambaugh, Patrick Browning
This paper investigates the effect of various magnetic field configurations on an ionized exhaust plume operating under near vacuum conditions. The purpose of this investigation is to determine if deploying a toroidal magnetic field around an ionized exhaust plume can alter the exhaust profile. The test apparatus utilizes a series of twelve N52 grade neodymium magnets mounted on a steel toroid. The design is proposed as a low-cost alternative to toroidal electromagnets. Five different apparatus configurations were tested in this experiment. Each test was documented using 12 sets of photographs taken from a fixed position with respect to the flow. Photographs were taken after the arc jet had run for 10, 20, and 30 seconds. Data from each configuration was compiled using image processing and compared with data from other configurations at corresponding time periods. Two configurations were run as control tests without any magnetic interference.
2017-09-19
Technical Paper
2017-01-2050
Piotr Synaszko, Michal Salacinski, Patryk Ciezak
The work concerns the selection of measurement parameters for selected non destructive testing methods of Mi helicopter rotor blades after repair. Considered repair cases involve metal cracks in the sandwich skin and repair damage of honeycomb structure structure (puncture, dent). In the event of a crack, repair is performed by applying a composite-metal repair package. In case of damage of the core, its broken piece is replaced by a new one and then applied the same metal-composite package as in the case of crack repair. The present work focuses on detecting disbond between skin and core below repair patch and cracks under the repair package. Detecting cracks and assessing their length is important because the repair technology provides the repair package without removing of cracked part of skin. Authors have used laser shearography and C-scan methods for MIA and ET.
2017-09-19
Technical Paper
2017-01-2104
Marc Gatti
I Certification of a mono or multicore processor is going to request to demonstrate that we are able to master the determinism of the execution for all the applications which are going to be executed. Regarding the multicore we introduce a level of complexity to be managed regarding the execution of the application in parallel on each of the cores of the multicore processor whatever is the internal architecture of the processor. In an IMA context: This determinism is insured by the control of the WCET allowing defining a maximal boundary for all the accesses to all the services offered by the Operating System. The Platform Provider has no information about the applications which are going to be executed by his platform. In this condition the computation of a WCET on a multi-core, like it is done currently on a mono-core, will be realized by introducing constraints at the level of the internal functioning of the multi-core processor.
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
2017-09-19
Technical Paper
2017-01-2047
Tyler Vincent, Joseph Schetz, K. Lowe
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for approximate methods, and that is the subject of this paper.
2017-09-19
Technical Paper
2017-01-2051
Vasanth Thanigaivelu, Samir Choksi
Testability addresses the extent to which a system or unit supports fault detection and fault isolation in a confident, timely and cost-effective manner. The incorporation of adequate testability, including Built-In Test (BIT), requires early end systematic management attention to testability requirements, design and measurement. Whilst the design of BIT has become a standard design practice for a complex control system, the process to measure the effectiveness of such circuitry (both hardware and software) remains qualitative. The Built-In Test Effectivity Analysis or BEA tries to quantify such analysis at each phase; identifying requirement gaps that help design safer products. The BEA modifies standard reliability programme to use Functional Failure Modes and Effects Analysis (FFMEA), and a reliability prediction of each functional group to generate a measure of how thoroughly the system can check itself.
2017-09-19
Journal Article
2017-01-2114
Jann-Eve Stavesand, Sören Reglitz, Andreas Himmler
Abstract In the aerospace industry, methods for virtual testing cover an increasing range of test executions carried out during the development and test process of avionics systems. Over the last years, most companies have focused on questions regarding the evaluation and implementation of methods for virtual testing. However, it has become more and more important to seamlessly integrate virtual testing into the overall development process. For instance, a company’s test strategy might stipulate a combination of different methods, such as SIL and HIL simulation, in order to benefit from the advantages of both in the same test process. In this case, efforts concentrate on the optimization of the overall process, from test specification to test execution, as well as the test result evaluation and its alignment with methods for virtual testing.
2017-09-19
Journal Article
2017-01-2153
Patrick Land, Petros Stavroulakis, Richard Crossley, Patrick Bointon, Harvey Brookes, Jon Wright, Svetan Ratchev, David Branson
Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off the shelf NDT equipment utilizing Fringe projection and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with evaluating carbon composite panels. This process allows us to rapidly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using (AFP) and formed using Thermal Roll Forming (TRF).
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2119
Lars Stockmann, Andreas Himmler
Hybrid test systems are gaining more and more significance in the aerospace industry. The heart of such a system is a standardized communication infrastructure. It forms the basis to combine test equipment of different suppliers and (re-)use laboratory test means of different aircraft programs. This not only improves modularity and scalability, but allows to use the best equipment for a particular task. There are many challenges when designing such a communication infrastructure. To give but one example, before the different parts of a hybrid test system can exchange simulation data, there is the need for a controlled startup and configuration. But how can this be done when every system has completely different startup behavior, communicates its status through vendor specific interfaces and can be controlled only through vendor specific control software?
2017-09-17
Technical Paper
2017-01-2499
Xianyao Ping, Meifang Wu, Gangfeng Tan, Yuxin Pang, Yu Tang, Di Wu
The engine brake is widely used as auxiliary brake device for its continuous brake torque. The engine brake performance is usually determined in the laboratory or proving ground according to relevant standards. The main purpose of this paper is to introduce an on-vehicle measurement system to measure the engine brake performance in the driving process. The on-vehicle measurement system makes use of the vehicle driving information to deduce the engine brake performance during transportation, which can reduce the test times in the laboratory or proving ground and the sensor cost. The measurement system based on the vehicle longitudinal dynamics can adapt to various vehicle automatically without measuring the vehicle or engine parameters before installation. And the measurement system can also estimate gross vehicle mass approximately.
2017-09-17
Technical Paper
2017-01-2488
Manuel Pürscher, Peter Fischer
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
2017-09-17
Technical Paper
2017-01-2497
Georg Peter Ostermeyer, Alexander Vogel
The Automated Universal Tribotester (AUT) is developed at the Institute of Dynamics and Vibrations (TU Braunschweig) and represents a reduced scale brake dynamometer. The setup is based on the pin-on-disc principle and the down-scaled test specimen are brought to contact to the disc and loaded via the specifically designed load unit. The AUT’s load unit is designed as a combination of parallel and serial leaf springs, resulting in a friction free motion. The stiffness in radial and tangential directions are much higher than in normal orientation. For the investigation of wear debris over time, changes in loads (e.g. forces, speeds, temperatures) are applied. Those varying loads result in tilting of the contact surface of the test specimen due to small elastic deformations. A change of the contact area is inevitable, and long time periods are needed to adopt the contact area to the new conditions. This prevents from investigating fast changes in the above mentioned loads.
2017-09-17
Journal Article
2017-01-2502
David B. Antanaitis, Matthew Robere
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems –when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers – something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
2017-09-17
Journal Article
2017-01-2501
ByeongUk Jeong, Hyong Tae Ryu, Kwang Ki Jung, Chang Jin Kim
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Sucess of doing this properly causes more heat to the disc in the brake system which results in the deformation or scratches on the surface of it and a reduction in the appearance of the product. A study for detailed factors to aggravate this was done as a solution to prevent these form happening. In this paper, we present our work based on experiments to study MPU(Metal Pick Up) of the pad and the scoring(scratching)of the disc. MPU of which the main component is "Fe", is formed through the process of fusing the separated materials from the disc by friction wiht the pad, and by local heat generation to the pad. The occurrence of MPU and the possibility of the disc scoring resulting from this were studied by noting "Fe" which was transferred to the surface of the pad to different extent and degree of segregation according to the roughness of disc.
Viewing 1 to 30 of 15349