Criteria

Text:
Display:

Results

Viewing 1 to 30 of 15290
2017-03-28
Technical Paper
2017-01-0480
Mingde Ding
For structural application, composite parts structure is much more affected by load cases than steel part structure. Engine room bracket of EV, which is structural part and is used to bear Motor Controller, Charger and so on, has different load cases for different EV. Three commonest load cases that are Case 1: bearing 65kg (without suspension part), Case 2: bearing 68kg(including 3.5kg suspension part) and Case 3: bearing 70.1kg (including 5.6kg suspension part). According to topology optimization, structurel 1 was obtained, and then CAE analysis including (strength, stiffness and model) was carried out for abovement three load cases. For Case 1 and Case 2, the analysis result can meet the requirement. However, for Case 3, the stiffness and model analysis result can not satisfy the requirement. To meet the analysis result of Case 3, Structure 1 was optimized and structure 2 was obtained. The CAE analysis was conducted and the results can satisfy the requirements.
2017-03-28
Technical Paper
2017-01-0384
Bo Zhang, Qingzhu Cai, Yong Lu, Jianfeng Wang, Lei Wang, Wenqian Chen, Lie Yao, Yuqing Gu, Tao Gu, Shawn S. You
Abstract ADAMS, SIMULINK, and ADAMS-SIMULINK co-simulation models of component test systems, Multi-Axis-Simulation-Table (MAST) systems, and spindle-coupled vehicle testing system (MTS 329) were created. In the ADAMS models, the mechanical parts, joints, and bushings were modeled. Hydraulic and control elements were absent. The SIMULINK models modeled control and hydraulic elements including actuator dynamics, servo valve dynamics, closed loop control, three-variable control, matrix control, and coordinate transformation. However, the specimen had to be simplified due to the limitation of SIMULINK software. The ADAMS-SIMULINK co-simulation models considered hydraulic and control components in the SIMULINK portion and mechanical components in ADAMS portion. The interaction between the ADAMS and SIMULINK portions was achieved using ADAMS/Control.
2017-03-28
Technical Paper
2017-01-0393
Keunsoo Kim
Abstract Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
2017-03-28
Technical Paper
2017-01-0402
Zhigang Zhang, Shi Xiaohui, Ye Bin
Abstract Based on the formation mechanism of engaging force of clutch, the engagement was divided into four stages: idle stage, cushion spring stage, diaphragm spring stage and locked stage. The mechanism of transmitted torque in each stage was analyzed and the transmitted torque model of clutch was deduced. Multi-load step analysis method based on finite element was used to analyze the coupling load-deformation characteristics of diaphragm spring and cushion spring in engagement, and the change laws of engaging force, diaphragm spring force and release bearing force were achieved and their coupling interaction were studied. And then change of friction coefficient of clutch with oscillating temperature was measured on friction test rig, and effect of temperature on transmitted torque was further discussed. Finally, simulation results of transmitted torque were validated by the experiment. Results indicate that the transmitted torque in clutch engagement has a nonlinear characteristic.
2017-03-28
Technical Paper
2017-01-0893
Marek Tatur, Kiran Govindswamy, Dean Tomazic
Abstract Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. Strip friction methods are used to determine and isolate components in engines and transmissions with the highest contribution to friction losses. However, there is relatively little focus on friction optimization of Front-End-Accessory-Drive (FEAD) components such as alternators and Air Conditioning (AC) compressors. This paper expands on the work performed by other researchers’ specifically targeting in-depth understanding of system design and operating strategy.
2017-03-28
Technical Paper
2017-01-0898
Jongwon Lee, Sedoo Oh, Kyung Sub Joo, Seyoung Yi, Kyoung-Pyo Ha, Seongbaek Joo
Abstract The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
2017-03-28
Technical Paper
2017-01-0449
Yinzhi He, Bin Wang, Zhe Shen, Zhigang Yang, Gunnar Heilmann, Tao Zhang, Guoxu Dong
Abstract Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
2017-03-28
Technical Paper
2017-01-1066
Christoph Beerens, Alexander Mueller, Kimm Karrip
Abstract As emissions regulations and carbon footprint are more and more demandingly controlled, thermal efficiency of engine components must be optimized. Valve group components have to allow for ever increasing temperatures, endure aggressive condensates or even contribute directly to rising efficiency and emissions demands. Even with integrated and cooled exhaust manifolds, the exhaust valves are meeting full combustion temperatures, especially for stoichiometric combustion. MAHLE has developed a new technology in order to measure valve temperatures in real time, i.e. Transient Valve Temperature Measurement (TVTM). This is a complex methodology using thermocouples installed inside of the valves, offering the possibility to run the engine at different conditions, without any functional changes in the valve train system at all. Specifically valve rotation is not affected and thus temperatures all around the valve seat can be captured during rotation.
2017-03-28
Technical Paper
2017-01-1360
John D. Bullough
Abstract Nighttime driving cannot be accomplished without vehicle headlighting. A growing body of evidence demonstrates the role of lighting on visual performance and in turn on nightttime driving safety in terms of crashes. Indirect impacts of lighting via comfort or other factors are less well understood, however. A two-part field study using real-world drivers of an instrumented vehicle was conducted to assess the potential role of oncoming headlight glare as a factor in driving behaviors that might be related to increased crash risks. In the first part of the study, drivers' behaviors when navigating through roadway intersections having different levels of crash risk were recorded in order to identify responses that were correlated with the risk level. In the second part, drivers were exposed to different levels of glare from oncoming headlights; several of the same risk-related behaviors identified in the first part of the study were exhibited.
2017-03-28
Technical Paper
2017-01-1356
Rainer Neumann
Abstract In the last years we recognize a big amount of innovative solutions in the field of automotive lighting and especially in front lighting systems. The major target to improve the light performance and to make driving at night safe is most important. The measure for the performance rating and the ability to compare different systems with a technology neutral process seems to be quite difficult. The legislation is looking for a simplification with clearly defined parameters for the future. Experimental test series recently published causing a lot of discussions as the sensitivity of the aiming of the headlamps can cause completely different performance test results. The paper will report on a study with various production vehicles, all in the same way initially aimed and prepared for all type of technologies.
2017-03-28
Technical Paper
2017-01-1374
Michael J. Flannagan, Shan Bao, Anuj Pradhan, John Sullivan, Yu Zhang
Abstract Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
2017-03-28
Technical Paper
2017-01-1371
Hao Pan, Xuexun Guo, Xiaofei Pei, Xingzhi Dong
Abstract Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
2017-03-28
Technical Paper
2017-01-1095
Sankar B. Rengarajan, Jayant Sarlashkar, Peter Lobato
Abstract SAE Recommended Practice J1540 [1] specifies test procedures to map transmission efficiency and parasitic losses in a manual transmission. The procedure comprises two parts. The first compares input and output torque over a range of speed to determine efficiency. The second measures parasitic losses at zero input torque over a range of speed. As specified in J1540, efficiency of transmissions is routinely measured on a test-stand under steady torque and speed [2] [3]. While such testing is useful to compare different transmissions, it is unclear whether the “in-use” efficiency of a given transmission is the same as that measured on the stand. A vehicular transmission is usually mated to a reciprocating combustion engine producing significant torque and speed fluctuations at the crankshaft. It is thus a valid question whether the efficiency under such pulsating conditions is the same as that under steady conditions.
2017-03-28
Technical Paper
2017-01-1388
S. M. Akbar Berry, Michael Kolich, Johnathan Line, Waguih ElMaraghy
Abstract Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
2017-03-28
Technical Paper
2017-01-1448
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli
Abstract Ford Motor Company introduced the automotive industry’s first second row inflatable seatbelt system in 2011. The system is currently available in the outboard seating positions of the second row of several Ford and Lincoln models. An important consideration for this system is the interaction with child restraint systems (CRS) when it is used to install a CRS or used in conjunction with belt position booster. A novel test methodology to assess the interaction of CRS with Ford and Lincoln inflatable seatbelts through frontal impact sled tests is explained. Details of test methods including construction of additional fixtures and hardware are highlighted. This procedure is designed to enable test labs capable of running Federal Motor Vehicle Safety Standard (FMVSS) 213 testing to adapt this test method, with minimal fabrication, by utilizing existing test benches.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the cast iron sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Technical Paper
2017-01-0429
Michael Holland, Jonathan Gibb, Kacper Bierzanowski, Stuart Rowell, Bo Gao, Chen Lv, Dongpu Cao
Abstract This paper outlines the procedure used to assess the performance of a Lane Keeping Assistance System (LKAS) in a virtual test environment using the newly developed Euro NCAP Lane Support Systems (LSS) Test Protocol, version 1.0, November 2015 [1]. A tool has also been developed to automate the testing and analysis of this test. The Euro NCAP LSS Test defines ten test paths for left lane departures and ten for right lane departures that must be followed by the vehicle before the LKAS activates. Each path must be followed to within a specific tolerance. The vehicle control inputs required to follow the test path are calculated. These tests are then run concurrently in the virtual environment by combining two different software packages. Important vehicle variables are recorded and processed, and a pass/fail status is assigned to each test based on these values automatically.
2017-03-28
Technical Paper
2017-01-0720
Omar Ramadan, Luc Menard, David Gardiner, Aaron Wilcox, Gary Webster
Abstract This paper is a continuation of work previously discussed in SAE 2014-01-0179 [1] and SAE 2015-01-0805 [2], which was intended to improve the capability and precision of the Ignition Quality Tester (IQT™) and associated ASTM D6890 [3]/CEN EN 15195 [4]/EI IP 498 [5] Test Methods. The results presented in those two papers indicated how the new generation of IQT™ with the TALM Precision Package upgrade can markedly improve the precision of the ASTM D6890, CEN EN 15195 and EI IP 498 Derived Cetane Number (DCN) test methods. This paper will evaluate the performance of the upgraded instruments over the past 21 months of their participation in ASTM’s National Fuel Exchange Group (NEG) diesel fuel exchange program.
2017-03-28
Technical Paper
2017-01-0003
Tetsuya Tohdo
Abstract We propose a verification method in the field of automotive control systems integrating the concepts of Formal Methods with testing, aiming at efficient and reliable software development. Although Formal Methods are believed to provide the benefits of their rigorous nature and their inherent capability of automation, only limited cases are known where Formal Methods were applied in system and software development, in practice, due to two major difficulties: appropriate abstraction in modeling and scalability in automated reasoning. Focusing on testing on the other hand, there is the difficulty of selecting reasonable set of tests for given verification objectives. In order to overcome these difficulties, our approach is to present verification criteria for testing to appropriately cover the property with the help of the Formal Method concepts.
2017-03-28
Technical Paper
2017-01-0004
Norbert Wiechowski, Thomas Rambow, Rainer Busch, Alexander Kugler, Norman Hansen, Stefan Kowalewski
Abstract Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
2017-03-28
Technical Paper
2017-01-1065
Douglas R. Martin, Benjamin Rocci
Abstract Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
2017-03-28
Journal Article
2017-01-1549
Taro Yamashita, Takafumi Makihara, Kazuhiro Maeda, Kenji Tadakuma
Abstract In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
2017-03-28
Technical Paper
2017-01-1671
Johannes Bach, Marc Holzäpfel, Stefan Otten, Eric Sax
Abstract Enhanced technological capabilities render the application of various, increasingly complex, functional concepts for automated driving possible. In the process, the significance of automotive software for a satisfactory driving experience is growing. To benefit from these new opportunities, thorough assessment in early development stages is highly important. It enables manufacturers to focus resources on the most promising concepts. For early assessment, a common approach is to set up vehicles with additional prototyping hardware and perform real world testing. While this approach is essential to assess the look-and-feel of newly developed concepts, its drawbacks are reduced reproducibility and high expenses to achieve a sufficient and balanced sample. To overcome these drawbacks, new flexible, realistic and preferably automated virtual test methods to complement real world verification and validation are especially required during early development phases.
2017-03-28
Technical Paper
2017-01-1672
Siddartha Khastgir, Gunwant Dhadyalla, Stewart Birrell, Sean Redmond, Ross Addinall, Paul Jennings
Abstract The advent of Advanced Driver Assistance Systems (ADAS) and automated driving has offered a new challenge for functional verification and validation. The explosion of the test sample space for possible combinations of inputs needs to be handled in an intelligent manner to meet cost and time targets for the development of such systems. This paper addresses this research gap by using constrained randomization techniques for the creation of the required test scenarios and test cases. Furthermore, this paper proposes an automated constrained randomized test scenario generation framework for testing of ADAS and automated systems in a driving simulator setup. The constrained randomization approach is deployed at two levels: 1) test scenario randomization 2) test case randomization.
2017-03-28
Technical Paper
2017-01-1676
Hartmut Lackner
Abstract Software systems, and automotive software in particular, are becoming increasingly configurable to fulfill customer needs. New methods such as product line engineering facilitate the development and enhance the efficiency of such systems. In modern, versatile systems, the number of theoretically possible variants easily exceeds the number of actually built products. This produces two challenges for quality assurance and especially testing. First, the costs of conventional test methods increase substantially with every tested variant. And secondly, it is no longer feasible to build every possible variant for the purpose of testing. Hence, efficient criteria for selecting variants for testing are necessary. In this contribution, we propose a new test design method that enables systematic sampling of variants from test cases. We present six optimization criteria to enable control of test effort and test quality by sampling variants with different characteristics.
2017-03-28
Technical Paper
2017-01-1682
Matthew von der Lippe, Mark Waterbury, Walter J. Ortmann, Bernard Nefcy, Scott Thompson
Abstract The FMEA and DV&PV process of developing automotive products requires identifying and repeatedly testing critical vehicle attributes and their response to noise factors that may impair vehicle function. Ford has developed a new automated scripting tool to streamline in-vehicle robustness testing and produce more accurate and repeatable results. Similar noise factors identified during the FMEA process are grouped together, condensed, and scripts are developed to simulate these noise factors using calibration parameters and vehicle controls. The automated testing tool uses the API of a calibration software tool and a graphical scripting interface to consistently simulate driver inputs with greater precision than a human calibrator and enable more sophisticated controls, which would have previously required experimental software builds.
2017-03-28
Technical Paper
2017-01-1681
Kyaw Soe
Abstract This paper describes a test system for improving the completeness and representativeness of automotive electrical/electronic (E/E) test benches. This is with the aim to enable more testing and hence increase the usage and effectiveness of these facilities. A proportion of testing for automotive electrical and electronics systems and components is conducted using E/E testing boards (“test-boards”). These are table-like rigs consisting of most or all electrical and electronic parts connected together as per a car/truck/van. A major problem is that the testing is conducted on the equivalent of a static vehicle: test-boards lack basic dynamic elements such as a running engine, vehicle motion, environmental, component and fluid temperatures, etc. This limits the testing that can be carried out on such a test-board.
2017-03-28
Technical Paper
2017-01-1002
Daisuke Tanaka, Ryo Uchida, Toru Noda, Andreas Kolbeck, Sebastian Henkel, Yannis Hardalupas, Alexander Taylor, Allen Aradi
Reducing engine-out particulates is one of the main issues of direct injection gasoline engines and further efforts are still needed to comply with near-future emission regulations. However, engine-out particulate emission characteristics strongly depend on fuel properties associated with the combustion design and/or calibration, due to the complicated mechanisms of particulate formation, including both physical and chemical processes. For these reasons, the purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel.
2017-03-28
Technical Paper
2017-01-1147
Hyunjun Kim, Jingeon Kang, Dongsuk Kum
Abstract Input- and output-split hybrids using a single planetary gear (PG) can provide high fuel economy, but they tend to suffer from low acceleration performance. In order to improve their acceleration performance, speed reduction (multiplication) gears (SRG/SMG) have often been employed in various mass-produced split hybrids. In fact, adding one SRG (SMG) to input- or output-split hybrids can improve not only the acceleration performance, but also the fuel economy. Nevertheless, the full potentials of using SRGs (SMGs) have not yet been thoroughly investigated because the design space of input- and output-split configurations using one SRG (SMG) is huge; 432 configurations can be generated using two PGs where one PG is used as an SRG/SMG. Thus, in order to investigate the impacts of SRG (SMG) within a reasonable time, an efficient analysis procedure is required.
Viewing 1 to 30 of 15290