Criteria

Text:
Display:

Results

Viewing 1 to 30 of 55
2017-10-13
Technical Paper
2017-01-5012
Harveer Singh Pali, Shashi Prakash Dwivedi
Abstract The present work deals with the fabrication and tribological testing of an aluminium/SiC composite. Fabrication was done using two techniques; mechanical stir casting and electromagnetic stir casting. Metal matrix composite (MMC) was fabricated using aluminium as a matrix and SiC as reinforcement in varying weight percentages. The wear and frictional properties of the MMC were studied by performing dry sliding wear test using a pin-on-disc wear tester for both types of samples. Wear rate retards with the increase the percentage of reinforcement whereas it improves with the addition of normal force. At same time frictional coefficient upsurges by increasing the normal force and percentage of reinforcement. Increasing percentage of reinforcement and using electromagnetic stir casting process obtained the higher frictional coefficient and lower wear rate.
2017-10-13
Technical Paper
2017-01-5013
G. Magendran
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
2017-10-08
Technical Paper
2017-01-2332
Tamara Ottenwaelder, Stefan Pischinger
Abstract In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
2017-10-08
Technical Paper
2017-01-2354
Dave Horstman, John Sparrow
Abstract Due to recent legislation on CO2 emissions, Heavy Duty engine and vehicle manufacturers and their suppliers have had an increased interest in improving vehicle fuel economy. Many aspects are being investigated including vehicle aerodynamics, tire rolling resistance, waste heat recovery, engine fuel efficiency, and others. Crankcase oils offer a cost-effective mechanism to reduce engine friction and increase engine fuel efficiency. The potential gains realized by optimized fuel-efficient oils are relatively small, usually less than 3%. Therefore, in order to develop these oils, formulators must have a robust, repeatable, and realistic test method for differentiation. To serve Light Duty (LD) engines, this need has been partially satisfied by the development of what became the Sequence VI engine test for gasoline passenger car oils in the early 1990’s.
2017-10-08
Technical Paper
2017-01-2349
Sarita Seth, Swamy Maloth, Prashant Kumar, Bhuvenesh Tyagi, Lokesh Kumar, Rajendra Mahapatra, Sarita Garg, Deepak Saxena, R Suresh, SSV Ramakumar
Abstract Automobile OEMs are looking for improving fuel economy[1,2] of their vehicles by reducing weight, rolling resistance and improving engine and transmission efficiency apart from the aerodynamic design. Fuel economy may be improved by using appropriate low viscosity [3] and use of friction reducers (FRs)[4,5] in the engine oils. The concept of high viscosity index [6] is being used for achieving right viscosity at required operating temperatures. In this paper performance properties of High Viscosity Index engine oils have been compared with conventional VI engine oils. Efforts have been made to check the key differentiation in oil properties w.r.t. low temperature fluidity, high temperature high shear viscosity/deposits, friction behavior, oxidation performance in bench tribological /engine/chassis dyno tests which finally lead to oil performance assessment.
2017-10-08
Technical Paper
2017-01-2361
David R. Lancaster
Abstract Virtually all developed countries regulate light-duty vehicle emissions and fuel consumption. Those regulations rely on different procedures and driving cycles in testing to different standards in different countries. As a result, it is often very difficult to compare the standards imposed by different countries. This paper utilizes publicly available data to compare the energy requirements of the chassis dynamometer driving cycles in common use throughout the world. It also examines the relative severity of the currently existing light duty vehicle CO2 standards, some of which are mass-based with a targeted fleet average, and some of which are individual vehicle targets based on footprint.
2017-10-08
Technical Paper
2017-01-2215
Mingming Ma
Abstract A lubricating system modeling method based on flight test data is proposed in this paper. ANN model based on a large number of flight test data is trained and validated, and models of 6 lubricating system parameters in all engine operation settings and whole flight envelope are established. Model results are in good agreement with flight test results, which shows feasibility and effectiveness of the presented modeling method. The model results are packaged in dynamic link library, and the coordination between calculating model and GDAS is accomplished. Comparison of model and flight test results in real-time monitoring of flight test comes true, thus on-line trend monitoring of oil parameters is implemented and applied. Additionally, input parameters are gradually decreased as new input parameter group of ANN structure. Oil parameter model is trained and validated again with the new group of parameters, until leading to unacceptable bias between model and flight test results.
2017-10-08
Technical Paper
2017-01-2294
Julien Gueit, Jerome Obiols
Abstract In order to be ever more fuel efficient the use of Direct Injection (DI) is becoming standard in spark ignition engines. When associated with efficient turbochargers it has generated a significant increase in the overall performance of these engines. These hardware developments lead to increased stresses placed upon the fuel and the fuel injection system: for example injection pressures increased up to 400 bar, increased fuel and nozzle temperatures and contact with the flame in the combustion chamber. DISI injectors are thus subjected to undesirable deposit formation which can have detrimental consequences on engine operation such as reduced power, EOBD (Engine On Board Diagnostics) issues, impaired driveability and increased particulate emissions. In order to evaluate the sensitivity of DI spark ignition engines to fuel-related injector deposit formation, a new engine test procedure has been developed.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Zhi Ning, Chia-Fon Lee, Han Wu
Abstract Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2404
Douglas Ball, David Lewis, David Moser, Sanket Nipunage
Abstract Federal Test Procedure (FTP) emissions were measured on a 2009 4 cylinder 2.4L Malibu PZEV vehicle with 10 and 30ppm sulfur fuel while varying the PGM (Platinum Group Metals) of the close-coupled and underfloor converters. Base CARB PH-III certification fuel was used. Three consecutive FTPs were used to measure the impact of fuel sulfur and catalyst PGM loading combinations. In general, reducing fuel sulfur and increasing catalyst PGM loadings, decrease FTP emissions. Increasing Pd concentrations can mitigate the impact of higher fuel sulfur concentrations. The results also suggest that a 50% reduction in PGM can be achieved with a reduction in fuel sulfur from 30 to 10 ppm. On average, NMHC, CO and NOx emissions were reduced by 12, 49 and 64%, respectively with the 10 ppm sulfur fuel. In addition, HC and NOx vehicle emission variability were reduced by 74 and 57% with the 10 ppm sulfur fuel.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin Wang, Xiongcai Zou, Zhiming Zhang, Wenlong Zhang, Shemin Zhang, Tao Chen, Yuhuang Cao, Yuanda Chen
Abstract In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is adopted in a three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. For turbocharger, in order to simulate the outlet turbulent flow and 3d rotation, a code was compiled to define this 3d rotation.
2017-10-08
Journal Article
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
Abstract In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-10-08
Journal Article
2017-01-2296
Andreas Glawar, Fabian Volkmer, Yanyun Wu, Adrian Groves
Abstract Driven by increasingly stringent tailpipe CO2 and fuel economy regulations, gasoline direct injection (GDI) engines are enjoying rapidly increasing market penetration. Already more than 50% of newly produced vehicles in the US and western Europe employ direct-injection technology and many markets in Asia are also seeing an increasingly rapid uptake. However, with the adoption of GDI engine technology, which is able to push the boundaries of engine efficiency, new challenges are starting to arise such as injector nozzle deposits, which can adversely affect performance. Multi-hole solenoid actuated fuel injectors are particularly vulnerable to deposits formed when operated on some market fuels. In order to address this challenge, the development of a reliable industry test platform for injector cleanliness in GDI engines is currently underway in both the US and Europe.
2017-10-08
Journal Article
2017-01-2298
Charles S. Shanahan, S. Scott Smith, Brian D. Sears
Abstract The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
2017-10-08
Journal Article
2017-01-2348
Michael Clifford Kocsis, Peter Morgan, Alexander Michlberger, Ewan E. Delbridge, Oliver Smith
Abstract Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
2017-10-08
Journal Article
2017-01-2341
Kongsheng Yang, Kristin A. Fletcher, Jeremy P. Styer, William Y. Lam, Gregory H. Guinther
Abstract Countries from every region in the world have set aggressive fuel economy targets to reduce greenhouse gas emissions. To meet these requirements, automakers are using combinations of technologies throughout the vehicle drivetrain to improve efficiency. One of the most efficient types of gasoline engine technologies is the turbocharged gasoline direct injection (TGDI) engine. The market share of TGDI engines within North America and globally has been steadily increasing since 2008. TGDI engines can operate at higher temperature and under higher loads. As a result, original equipment manufacturers (OEMs) have introduced additional engine tests to regional and OEM engine oil specifications to ensure performance of TGDI engines is maintained. One such engine test, the General Motors turbocharger coking (GMTC) test (originally referred to as the GM Turbo Charger Deposit Test), evaluates the potential of engine oil to protect turbochargers from deposit build-up.
2017-09-23
Technical Paper
2017-01-1992
Qin Xia, Jianli Duan, Feng Gao, Tao Chen, Cai Yang
Abstract ADAS must be tested thoroughly before they can be deployed for series production. Comparing with road and field test, bench test has been widely used owing to its advantages of less labor costs, more controllable scenarios, etc. However, there is no satisfied systematic approach to generate high-efficiency and full-coverage test scenarios automatically because of its integration of human, vehicle and traffic. Most of the test scenarios generated by the existing methods are either too simple or too few to be able to achieve full coverage of requirements. Besides, the cost is high when the ET method is used. To solve the aforementioned problems, an automatic test scenario generation method based on complexity for bench test is presented in this paper. Firstly, considering the fact that the device is easier to malfunction under complex cases, an index measuring the complexity of test case is proposed by using the method of AHP.
2017-09-23
Technical Paper
2017-01-1993
Daoyuan Sun, Xiaofei Pei, Xu Hu, Hao Pan, Bo Yang
Abstract This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
2017-09-22
Technical Paper
2017-01-7003
Mengzuo Han, Xin Gao, Tie Wang, Zhiwei Zhang
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
2017-09-19
Journal Article
2017-01-2153
Patrick Land, Petros Stavroulakis, Richard Crossley, Patrick Bointon, Harvey Brookes, Jon Wright, Svetan Ratchev, David Branson
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
2017-09-19
Technical Paper
2017-01-2048
Bryan Shambaugh, Patrick Browning
Abstract In this research, the magnetoplasmadynamic (MPD) effects of applying a toroidal magnetic field around an ionized exhaust plume were investigated to manipulate the exhaust profile of the plasma jet under near vacuum conditions. Tests for this experiment were conducted using the West Virginia University (WVU) Hypersonic Arc Jet Wind Tunnel. A series of twelve N52 grade neodymium magnets were placed in different orientations around a steel toroid mounted around the arc jet’s exhaust plume. Four different magnet orientations were tested in this experiment. Two additional configurations were run as control tests without any imposed magnetic fields surrounding the plume. Each test was documented using a set of 12 photographs taken from a fixed position with respect to the flow. The photographic data was analyzed by comparing images of the exhaust plume taken 10, 20, and 30 seconds after the plasma jet was activated.
2017-09-19
Journal Article
2017-01-2114
Jann-Eve Stavesand, Sören Reglitz, Andreas Himmler
Abstract In the aerospace industry, methods for virtual testing cover an increasing range of test executions carried out during the development and test process of avionics systems. Over the last years, most companies have focused on questions regarding the evaluation and implementation of methods for virtual testing. However, it has become more and more important to seamlessly integrate virtual testing into the overall development process. For instance, a company’s test strategy might stipulate a combination of different methods, such as SIL and HIL simulation, in order to benefit from the advantages of both in the same test process. In this case, efforts concentrate on the optimization of the overall process, from test specification to test execution, as well as the test result evaluation and its alignment with methods for virtual testing.
2017-09-19
Technical Paper
2017-01-2104
Marc Gatti
I Certification of a mono or multicore processor is going to request to demonstrate that we are able to master the determinism of the execution for all the applications which are going to be executed. Regarding the multicore we introduce a level of complexity to be managed regarding the execution of the application in parallel on each of the cores of the multicore processor whatever is the internal architecture of the processor. In an IMA context: This determinism is insured by the control of the WCET allowing defining a maximal boundary for all the accesses to all the services offered by the Operating System. The Platform Provider has no information about the applications which are going to be executed by his platform. In this condition the computation of a WCET on a multi-core, like it is done currently on a mono-core, will be realized by introducing constraints at the level of the internal functioning of the multi-core processor.
2017-09-19
Technical Paper
2017-01-2117
Dirk H. Martinen, Marc Lagalaye, Julien Pfefferkorn, Jean Casteres
Abstract Currently, aircraft system Test Benches are often proprietary systems, specifically designed and configured for a dedicated System Under Test (SUT). Today, no standards for configuration, data communication, and data exchange formats are available for avionics Test Benches. This leads to high Test Bench development costs and redundant activities between aircraft system suppliers and airframers. In the case of obsolescence issues for test system components, it is very costly to replace the respective parts as a high integration and reconfiguration effort is required. In the scope of an R&T project, involving several test system suppliers and aircraft system suppliers as well as Airbus as an aircraft manufacturer, a generic and modular architecture for an open test environment is under development. A further goal of the Virtual and Hybrid Testing Next Generation (VHTNG) research project is to prepare a set of open standards for the interfaces to this architecture.
2017-09-19
Technical Paper
2017-01-2119
Lars Stockmann, Andreas Himmler
Abstract Hybrid test systems are gaining more and more significance in the aerospace industry. At the heart of these systems is a standardized communication infrastructure. There are many challenges when designing the communication infrastructure. For example, it requires very specific knowledge to boot a hybrid system, manage its configuration process, and start and stop the execution of applications, such as simulations, panels or recorders. Likewise, when testers use a heterogeneous test environment, they cannot commit themselves too much to every single test means and its special characteristics. Nevertheless, testers must always be able to monitor and control every test system. This means, they must be able to determine the current overall system status and the current status of its components and parts. Examples for this are hardware components, such as real-time processors and I/O boards, as well as software applications, such as real-time simulations models on the test system.
2017-09-19
Technical Paper
2017-01-2162
Narayanan Komerath, Nandeesh Hiremath, Dhwanil Shukla, Joseph Robinson, Ayush Jha, Arun Palaniappan
Abstract This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
2017-09-19
Technical Paper
2017-01-2050
Piotr Synaszko, Michal Salacinski, Patryk Ciezak
Abstract The work concerns the selection of measurement parameters for selected non-destructive testing methods of Mi helicopter rotor blades after repair. Considered repair cases involve metal cracks in the sandwich skin and repair damage of honeycomb structure (puncture, dent). In the event of a crack, repair is performed by applying a composite-metal repair package. In case of damage of the core, its broken piece is replaced by a new one and then applied the same metal-composite package as in the case of crack repair. The present work focuses on detecting disbond between skin and core below repair patch and cracks under the repair package. Detecting cracks and assessing their length is important because the repair technology provides the repair package without removing of cracked part of skin. Authors have used laser shearography and C-scan methods for MIA and ET.
2017-09-19
Technical Paper
2017-01-2051
Vasanth Thanigaivelu, Samir Choksi
Abstract Testability measures the extent to which a system or unit supports fault detection and fault isolation in a confident, timely and cost-effective manner. The incorporation of adequate testability, including Built-In Test (BIT), requires early and systematic management attention to testability requirements, design and measurement. Whilst the design of BIT has become a standard design practice for a complex control system, the process to measure the effectiveness of such circuitry (both hardware and software) remains qualitative. The Built-In Test Effectivity Analysis (BEA) tries to quantify such analysis at each phase; identifying requirement gaps that help design safer products. The BEA modifies standard reliability programme to use Failure Modes and Effects and Criticality Analysis (FMECA), and reliability prediction of each functional group to generate a measure of how thoroughly the system can check itself.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
Abstract In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Abstract Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
Viewing 1 to 30 of 55