Display:

Results

Viewing 1 to 30 of 3388
2017-03-28
Technical Paper
2017-01-0384
Bo Zhang, Qingzhu Cai, Yong Lu, Jianfeng Wang, Lei Wang, Wenqian Chen, Lie Yao, Yuqing Gu, Tao Gu, Shawn S. You
Abstract ADAMS, SIMULINK, and ADAMS-SIMULINK co-simulation models of component test systems, Multi-Axis-Simulation-Table (MAST) systems, and spindle-coupled vehicle testing system (MTS 329) were created. In the ADAMS models, the mechanical parts, joints, and bushings were modeled. Hydraulic and control elements were absent. The SIMULINK models modeled control and hydraulic elements including actuator dynamics, servo valve dynamics, closed loop control, three-variable control, matrix control, and coordinate transformation. However, the specimen had to be simplified due to the limitation of SIMULINK software. The ADAMS-SIMULINK co-simulation models considered hydraulic and control components in the SIMULINK portion and mechanical components in ADAMS portion. The interaction between the ADAMS and SIMULINK portions was achieved using ADAMS/Control.
2017-03-28
Technical Paper
2017-01-0393
Keunsoo Kim
Abstract Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
2017-03-28
Technical Paper
2017-01-1066
Christoph Beerens, Alexander Mueller, Kimm Karrip
Abstract As emissions regulations and carbon footprint are more and more demandingly controlled, thermal efficiency of engine components must be optimized. Valve group components have to allow for ever increasing temperatures, endure aggressive condensates or even contribute directly to rising efficiency and emissions demands. Even with integrated and cooled exhaust manifolds, the exhaust valves are meeting full combustion temperatures, especially for stoichiometric combustion. MAHLE has developed a new technology in order to measure valve temperatures in real time, i.e. Transient Valve Temperature Measurement (TVTM). This is a complex methodology using thermocouples installed inside of the valves, offering the possibility to run the engine at different conditions, without any functional changes in the valve train system at all. Specifically valve rotation is not affected and thus temperatures all around the valve seat can be captured during rotation.
2017-03-28
Technical Paper
2017-01-1374
Michael J. Flannagan, Shan Bao, Anuj Pradhan, John Sullivan, Yu Zhang
Abstract Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
2017-03-28
Technical Paper
2017-01-1371
Hao Pan, Xuexun Guo, Xiaofei Pei, Xingzhi Dong
Abstract Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
2017-03-28
Technical Paper
2017-01-1095
Sankar B. Rengarajan, Jayant Sarlashkar, Peter Lobato
Abstract SAE Recommended Practice J1540 [1] specifies test procedures to map transmission efficiency and parasitic losses in a manual transmission. The procedure comprises two parts. The first compares input and output torque over a range of speed to determine efficiency. The second measures parasitic losses at zero input torque over a range of speed. As specified in J1540, efficiency of transmissions is routinely measured on a test-stand under steady torque and speed [2] [3]. While such testing is useful to compare different transmissions, it is unclear whether the “in-use” efficiency of a given transmission is the same as that measured on the stand. A vehicular transmission is usually mated to a reciprocating combustion engine producing significant torque and speed fluctuations at the crankshaft. It is thus a valid question whether the efficiency under such pulsating conditions is the same as that under steady conditions.
2017-03-28
Technical Paper
2017-01-1448
Kevin Pline, Derek Board, Nirmal Muralidharan, Srinivasan Sundararajan, Eric Eiswerth, Katie Salciccioli
Abstract Ford Motor Company introduced the automotive industry’s first second row inflatable seatbelt system in 2011. The system is currently available in the outboard seating positions of the second row of several Ford and Lincoln models. An important consideration for this system is the interaction with child restraint systems (CRS) when it is used to install a CRS or used in conjunction with belt position booster. A novel test methodology to assess the interaction of CRS with Ford and Lincoln inflatable seatbelts through frontal impact sled tests is explained. Details of test methods including construction of additional fixtures and hardware are highlighted. This procedure is designed to enable test labs capable of running Federal Motor Vehicle Safety Standard (FMVSS) 213 testing to adapt this test method, with minimal fabrication, by utilizing existing test benches.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-0429
Michael Holland, Jonathan Gibb, Kacper Bierzanowski, Stuart Rowell, Bo Gao, Chen Lv, Dongpu Cao
Abstract This paper outlines the procedure used to assess the performance of a Lane Keeping Assistance System (LKAS) in a virtual test environment using the newly developed Euro NCAP Lane Support Systems (LSS) Test Protocol, version 1.0, November 2015 [1]. A tool has also been developed to automate the testing and analysis of this test. The Euro NCAP LSS Test defines ten test paths for left lane departures and ten for right lane departures that must be followed by the vehicle before the LKAS activates. Each path must be followed to within a specific tolerance. The vehicle control inputs required to follow the test path are calculated. These tests are then run concurrently in the virtual environment by combining two different software packages. Important vehicle variables are recorded and processed, and a pass/fail status is assigned to each test based on these values automatically.
2017-03-28
Technical Paper
2017-01-0720
Omar Ramadan, Luc Menard, David Gardiner, Aaron Wilcox, Gary Webster
Abstract This paper is a continuation of work previously discussed in SAE 2014-01-0179 [1] and SAE 2015-01-0805 [2], which was intended to improve the capability and precision of the Ignition Quality Tester (IQT™) and associated ASTM D6890 [3]/CEN EN 15195 [4]/EI IP 498 [5] Test Methods. The results presented in those two papers indicated how the new generation of IQT™ with the TALM Precision Package upgrade can markedly improve the precision of the ASTM D6890, CEN EN 15195 and EI IP 498 Derived Cetane Number (DCN) test methods. This paper will evaluate the performance of the upgraded instruments over the past 21 months of their participation in ASTM’s National Fuel Exchange Group (NEG) diesel fuel exchange program.
2017-03-28
Technical Paper
2017-01-0004
Norbert Wiechowski, Thomas Rambow, Rainer Busch, Alexander Kugler, Norman Hansen, Stefan Kowalewski
Abstract Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
2017-03-28
Technical Paper
2017-01-1671
Johannes Bach, Marc Holzäpfel, Stefan Otten, Eric Sax
Abstract Enhanced technological capabilities render the application of various, increasingly complex, functional concepts for automated driving possible. In the process, the significance of automotive software for a satisfactory driving experience is growing. To benefit from these new opportunities, thorough assessment in early development stages is highly important. It enables manufacturers to focus resources on the most promising concepts. For early assessment, a common approach is to set up vehicles with additional prototyping hardware and perform real world testing. While this approach is essential to assess the look-and-feel of newly developed concepts, its drawbacks are reduced reproducibility and high expenses to achieve a sufficient and balanced sample. To overcome these drawbacks, new flexible, realistic and preferably automated virtual test methods to complement real world verification and validation are especially required during early development phases.
2017-03-28
Technical Paper
2017-01-1672
Siddartha Khastgir, Gunwant Dhadyalla, Stewart Birrell, Sean Redmond, Ross Addinall, Paul Jennings
Abstract The advent of Advanced Driver Assistance Systems (ADAS) and automated driving has offered a new challenge for functional verification and validation. The explosion of the test sample space for possible combinations of inputs needs to be handled in an intelligent manner to meet cost and time targets for the development of such systems. This paper addresses this research gap by using constrained randomization techniques for the creation of the required test scenarios and test cases. Furthermore, this paper proposes an automated constrained randomized test scenario generation framework for testing of ADAS and automated systems in a driving simulator setup. The constrained randomization approach is deployed at two levels: 1) test scenario randomization 2) test case randomization.
2017-03-28
Technical Paper
2017-01-1676
Hartmut Lackner
Abstract Software systems, and automotive software in particular, are becoming increasingly configurable to fulfill customer needs. New methods such as product line engineering facilitate the development and enhance the efficiency of such systems. In modern, versatile systems, the number of theoretically possible variants easily exceeds the number of actually built products. This produces two challenges for quality assurance and especially testing. First, the costs of conventional test methods increase substantially with every tested variant. And secondly, it is no longer feasible to build every possible variant for the purpose of testing. Hence, efficient criteria for selecting variants for testing are necessary. In this contribution, we propose a new test design method that enables systematic sampling of variants from test cases. We present six optimization criteria to enable control of test effort and test quality by sampling variants with different characteristics.
2017-03-28
Technical Paper
2017-01-1682
Matthew von der Lippe, Mark Waterbury, Walter J. Ortmann, Bernard Nefcy, Scott Thompson
Abstract The FMEA and DV&PV process of developing automotive products requires identifying and repeatedly testing critical vehicle attributes and their response to noise factors that may impair vehicle function. Ford has developed a new automated scripting tool to streamline in-vehicle robustness testing and produce more accurate and repeatable results. Similar noise factors identified during the FMEA process are grouped together, condensed, and scripts are developed to simulate these noise factors using calibration parameters and vehicle controls. The automated testing tool uses the API of a calibration software tool and a graphical scripting interface to consistently simulate driver inputs with greater precision than a human calibrator and enable more sophisticated controls, which would have previously required experimental software builds.
2017-03-28
Technical Paper
2017-01-1002
Daisuke Tanaka, Ryo Uchida, Toru Noda, Andreas Kolbeck, Sebastian Henkel, Yannis Hardalupas, Alexander Taylor, Allen Aradi
Reducing engine-out particulates is one of the main issues of direct injection gasoline engines and further efforts are still needed to comply with near-future emission regulations. However, engine-out particulate emission characteristics strongly depend on fuel properties associated with the combustion design and/or calibration, due to the complicated mechanisms of particulate formation, including both physical and chemical processes. For these reasons, the purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel.
2017-03-28
Technical Paper
2017-01-1231
Chun Tang, Natee Limsuwan, Nurani Chandrasekhar, Zhichun Ma, Jacob Krizan, Joel Hetrick, Wei Wu
Abstract The current of an electric machine driven by PWM switching inverter is not ideal sinusoidal, containing different levels of harmonics. The current harmonics have important impact on the electrical machine torque ripple which could translate into transmission and vehicle level Noise Vibration and Harshness (NVH). In this work, the current waveforms were measured from dyno test at prescribed torque and speed levels, and the electric machine torque ripple was computed with the measured current. This paper will focus on the investigation of the current harmonics behaviors and features at various torque and speed conditions, the impact on torque ripple, and the possible mitigation method to reduce torque ripple.
2017-03-28
Technical Paper
2017-01-1237
Ahmad Arshan Khan, Michael J. Kress
Abstract For high performance motor controls applications such as electric vehicles, accurate motor parameter knowledge is required. Motor parameters like d-axis inductance, q-axis inductance, resistance and permanent magnet flux linkage are difficult to obtain and measure directly. These four parameters can be reduced to three parameters resistance, d-axis and q axis flux linkage. In this paper, a new scheme is proposed to approximate d-axis and q-axis flux linkage using measured torque, dq-axis measured current, and dq-axis voltage commands to the inverter. d-axis and q-axis flux linkages are estimated over a range of d-axis and q-axis currents that fully map the desired motor operation region.
2017-03-28
Technical Paper
2017-01-1259
Eduardo D. Marquez, John Stevenson, Ethan Dietrich, Douglas Nelson, Christopher Flake, Alexander Neblett, Samuel Reinsel
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
2017-03-28
Technical Paper
2017-01-1417
Enrique Bonugli, Richard Watson, Mark Freund, Jeffrey Wirth
Abstract This paper reports on seventy additional tests conducted using a mechanical device described by Bonugli et al. [4]. The method utilized quasi-static loading of bumper systems and other vehicle components to measure their force-deflection properties. Corridors on the force-deflection plots, for various vehicle combinations, were determined in order to define the system stiffness of the combined vehicle components. Loading path and peak force measurements can then be used to evaluate the impact severity for low speed collisions in terms of delta-v and acceleration. The additional tests refine the stiffness corridors, previously published, which cover a wide range of vehicle types and impact configurations. The compression phase of a low speed collision can be modeled as a spring that is defined by the force-deflection corridors. This is followed by a linear rebound phase based on published restitution values [1,5].
2017-03-28
Technical Paper
2017-01-0745
R. Vallinayagam, S. Vedharaj, Yanzhao An, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Bengt Johansson
Abstract This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed.
2017-03-28
Technical Paper
2017-01-1398
Yoshiyuki Hatakeyema
Abstract Since drowsy driving is a major cause of serious traffic accidents, there is a growing requirement for drowsiness prevention technologies. This study proposes a drowsy driving prediction method based on eye opening time. One issue of using eye opening time is predicting strong drowsiness before the driver actually feels sleepy. Because overlooking potential hazards is one of the causes of traffic accidents and is closely related to driver cognition and drowsiness, this study focuses on eye opening movements during driving. First, this report describes hypotheses concerning drowsiness and eye opening time based on the results of previous studies. It is assumed that the standard deviation of eye opening time (SDEOP) indicates driver drowsiness and the following two transitions are considered: increasing and decreasing SDEOP. To confirm the hypotheses, the relationship between drowsiness and SDEOP was investigated.
2017-03-28
Journal Article
2017-01-1475
Saeed Barbat, Xiaowei Li
Abstract On December 2015, The National Highway Traffic Safety Administration (NHTSA) published its proposal to implement U.S New Car Assessment Program (NCAP) changes covering three categories of crashworthiness, crash avoidance and pedestrian protection, beginning with the 2019 model year. The crashworthiness category included a new frontal oblique impact (OI) test protocol. The test compromises of a new Oblique Moving Deformable Barrier (OMDB), new THOR 50th percentile male (THOR-50M) anthropomorphic test device (ATD), and a new test configuration. An OMDB of 2,486 kg (5,480 lb) impacts a stationary target vehicle at a speed of 90 kph (56 mph) at an angle of 15 degrees with a 35% barrier overlap with the front end of the target vehicle. In vehicle-to-vehicle collisions, the lighter weight vehicle experience higher velocity change and higher acceleration levels, thereby, occupants in the lighter vehicle experience higher injury risk.
2017-03-28
Technical Paper
2017-01-1007
Piotr Bielaczyc, Andrzej Szczotka, Joseph Woodburn
Abstract This paper reports testing conducted on multiple vehicle types over two European legislative driving cycles (the current NEDC and the incoming WLTC), using a mixture of legislative and non-legislative measurement devices to characterise the particulate emissions and examine the impact of the test cycle and certain vehicle characteristics (engine/fuel type, idle stop system, inertia) on particulate emissions. European legislative measurement techniques were successfully used to quantify particle mass (PM) and number (PN); an AVL Microsoot sensor was also used. Overall, the two driving cycles used in this study had a relatively limited impact on particulate emissions from the test vehicles, but certain differences were visible and in some cases statistically significant.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Technical Paper
2017-01-1410
Richard F Lambourn, James Manning
Abstract It can happen, following a collision between a car and a pedestrian or in a deliberate assault with a motor vehicle, that the pedestrian comes to be caught or wedged beneath the car, and that the driver then travels on for a considerable distance, afterwards claiming to have been unaware of the presence of the person. However, police, lawyers and jurors are often incredulous that the driver should not have been able to “feel” that there was something underneath his car. The authors have investigated the matter by carrying out practical tests with suitable cars and dummies. This paper describes instrumented tests performed by the authors following one such incident, and gives accounts of two previous incidents investigated in a more subjective fashion. The general conclusion is that the effect on the behavior of the car is very small and that a driver might indeed be unaware that there was a person trapped beneath them.
2017-03-28
Technical Paper
2017-01-0341
Seyyedvahid Mortazavian, Javid Moraveji, Reda Adimi, Xingfu Chen
Engine camshaft cap components experience high number of fluctuating loads during engine operation. The problem is complicated in engines with variable cam timing, because the loading for these components are sensitive to engine valve timing (combustion phasing) which can lead to catastrophic overload or fatigue failures. Improving the design of these components using computer-aided tools can drastically reduce the cost and time to the market of the final acceptable design, by eliminating the number of physical prototypes. Hence, a decent and robust finite element analysis with representative load and boundary conditions can significantly reduce the premature failures in engine development. In this study, first a finite element analysis method is developed for simulating a cap punching bench test. Effect of punch radius and shape on the component stiffness is investigated and correlated with test data.
2017-03-28
Technical Paper
2017-01-0371
Raju Gandikota, Amit Nair, Kurt Miller
Testing elastomeric materials that undergo large strains pose challenges especially when establishing failure criteria. The failure criterion for composites and polymers based on finite elasticity published byFeng (1) requires testing under uni-axial and bi-axial stretching modes. The classic inflation of a circular disk for bi-axial stretch mode poses stability and safety challenges. The test can also be sensitive to end constraints resulting in failure of materials at the constraints. Bi-axial stretching with a hemispherical punch is explored in this work. The bi-axial stretching allows controlled and repeatabletesting. It establishes clear and reliable failure mechanism of the material at the poles. Through a combination of testing and numerical methods, the stretch ratios and its relation to failure has been established.
2017-03-28
Technical Paper
2017-01-0381
L. Karthik, R. Dinesh Kumar, E. Prasanna Kumar, V. Srinivasa Chandra
This abstract report on data acquisition procedure followed for a critical metal bumper to be used for a commercial application and consequently the validation methodology and defining the target duration based on life of the vehicle. Covariance is considered to be a major phenomenon in proving ground data acquisition and it is be maintained less than 0.05. In this project, importance of covariance in data acquisition studied before simulation of acquired data. In addition to that, multiple testing conditions like uni-axial and bi-axial carried out to achieve failure. Proving ground tracks data is used for bi-axial vibration test and constant spectrum signal of 5 Hz to 40 Hz & 3g acceleration is used for uni-axial vibration test. Target hours for uni-axial test (Z direction) are arrived using pseudo damage calculation which helps a lot in accelerating the test duration.
Viewing 1 to 30 of 3388

Filter