Display:

Results

Viewing 1 to 30 of 2951
Technical Paper
2014-09-30
Oscar Flores-Centeno, Manuel Fabela-Gallegos, David Vazquez-Vega, Carlos Blake-Cervantes, Ricardo Hernandez-Jimenez
The vehicle’s dynamic behavior is influenced mainly by the interaction of four factors: driver, vehicle, road an environment. Under given circumstances, perturbation of these factors can cause degradation of vehicles´ performance; as a result, an accident will take place affecting the vehicle itself, road infrastructure and injury or even death of passenger(s). In order to increase road safety is essential to fully understand the interaction of those factors on vehicle’s dynamic behavior, especially heavy vehicles due to its greater mass, dimensions and potential damage that can cause. This paper presents the effect of road condition on the dynamic behavior of a 3-axle straight-truck based on numerical simulations. Validated commercial software was used. Three different road conditions were studied, namely potholes, longitudinal level differences between adjacent lanes due to repairing process, and different surface friction coefficients also due to road repairing process. For numerical simulations, three standardized maneuvers were taken into account, namely, single and double lane change and panic braking.
Technical Paper
2014-09-30
Mehmet Bakir, Murat Siktas, Serter Atamer
In today's world, there are a prominent number of weight & cost reduction projects within the vehicle engineering development activities. Regarding this phenomenon, a complete optimization study is applied to a 4-leaf pendulum leaf spring used in heavy duty trucks by reducing the number of leaves down to 3 together with weight and cost reductions. Leaf spring itself plays a crucial role in a heavy duty truck structure. Because of this purpose, the new designs should withstand all forces like the current design assuring same strength and fatigue characteristics. In other words, it should be lower in price and weight but at the same time strong enough to maintain its durability throughout its life time. This fact brings great responsibility to the development process of the new optimized leaf springs. Hence, a complete optimization process is applied from scratch till the very end which is illustrated in this paper. At the first step of the project, the stiffness of the leaf spring is calculated with an in-house software based on mathematical calculations using the thickness profile of the leaves.
Technical Paper
2014-09-30
Sijing Guo, Zhenfu Chen, Xuexun Guo, Quan Zhou, Jie Zhang
Hydraulic electromagnetic shock absorber (HESA) consists of hydraulic cylinder and check valves etc., by which the high-pressure oil produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator, and eventually recover the mechanical vibration energy otherwise dissipated by the traditional shock absorber as heat energy. Hydraulic Interconnected Suspension(HIS) can improve the vehicle roll and pitch stablity performance by interconnecting the chambers of the shock absorbers on the vehicle. To integrate both the advantages of HESA and HIS, a new type of suspension system is proposed in this paper, namely Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS). HESA-HIS has three operating modes: energy-recovery priority mode, driving stability performance priority mode and energy-recovery and driving stability performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, and the mathematic theory model is deduced with relative automobile theory knowledge.
Technical Paper
2014-09-30
Zhigang Wei, Limin Luo, Shengbin Lin
This paper reviews the correlation concepts and tools available, with the emphasis on their historical origins, mathematical properties and applications. Two of the most commonly used statistical correlation indicators, i.e., modal assurance criterion (MAC) for structural deformation pattern identification/correlation and the coefficient of determination (R2) for data correlation are investigated. The mathematical structure of R2 is critically examined, and the physical meanings and their implications are discussed. Based on the insights gained from these analyses, a data scatter measure and a dependency measure are proposed. The applications of the measures for both linear and nonlinear data are also discussed. Finally, several worked examples in vehicle dynamics analysis and statistical data analyses are provided to demonstrate the effectiveness of these concepts.
Standard
2014-09-09
The purpose of this SAE Information Report is to list and explain major equipment, instrumentation, and procedure variables which can affect inter-laboratory differences and repeatability of photometric measurements of various lighting devices listed in SAE Technical Reports. The accuracy guidelines listed in the report are for the purpose of controlling variables that are not a direct function of the lighting device being measured. The control of these individual variables is necessary to control the overall accuracy of photometric measurements. These accuracy guidelines apply to the measurement of the luminous intensities and reflected intensities of devices at the specified geometrically distributed test points and areas. These guidelines do not apply to photometric equipment used to measure license plate lamps.
Standard
2014-09-09
This SAE Recommended Practice defines an Inertia Dynamometer Test procedure that assesses the effectiveness behavior of a friction material with regard to pressure, temperature and speed for motor vehicles fitted with hydraulic brake actuation. The main purpose of SAE J2522 is to compare friction materials under the most equal conditions possible. To account for the cooling behavior of different test stands, the fade sections are temperature-controlled.
Standard
2014-07-24
Scope—Traditional methods of photometry rely on the use of a goniometer to rotate the test item around two axes at right angles. This method is satisfactory for most situations but has certain disadvantages: a. Point-by-point measurements with a goniometer may be slow. With more advanced requirements, particularly for headlamps, where the entire beam pattern is of concern, isocandela measurements are becoming increasingly needed. Such testing can be very time consuming. b. For production quality assurance, the speed of a goniometer may not allow testing to keep pace with the production line if a large quantity of lamps must be sampled. c. High Intensity Discharge (HID) lamps are becoming commonly used. Such lamps are orientation sensitive, changing in both lumen output and intensity distribution when tilted. This can introduce significant inaccuracies in test results when testing is performed using a goniometer. There is a need for alternative test techniques which can achieve very high speed data acquisition, the capture of full isocandela distribution, and the elimination of lamp tilting.
Standard
2014-07-08
The test method describes the procedure for determination of the total acid number of new and degraded polyol ester and diester based gas turbine lubricants by potentiometric titration technique. The method was validated to cover an acidity range 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricant.
WIP Standard
2014-06-26
This recommended practice describes the application of digital cameras to measurement of photometric quantities in the photometric laboratory.
WIP Standard
2014-05-23
This test method specifies the operating conditions for a fluorescent ultraviolet (UV) and condensation apparatus used for the accelerated exposure of various automotive exterior components. Specimen preparation, test duration, and performance evaluation procedures are addressed by each automotive manufacturerÕs material specifications. This SAE Standard may involve hazardous materials, operations, and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this document to consult and establish appropriate and health practices and determine the applicability of regulatory limitations prior to use. Significance and Use This test method is designed to simulate extreme environmental conditions encountered on the outside of an automobile due to sunlight, heat, and to provide an acceleration of exposure for the purpose of predicting the performance of exterior automotive materials. Unless otherwise specified, all dimensions reported in this method are nominal.
Standard
2014-05-20
This procedure is used to determine seam strength and seam fatigue of automotive textiles, vinyl coated fabrics and related soft trim materials.
Technical Paper
2014-05-07
Eraldo de Jesus Soares, Alan M. Oliva, Camilo A. Adas, Fernando C. Dusi, Paulo Sergio P. Santos, Marco A. Fogaça Accurso, Marcus Kliewer
Abstract The purpose of this paper is to show a multiaxial bench test for static and dynamic testing of leaf springs for suspension of commercial vehicles. The bench test simulates the critical operating conditions (track, ramp, speed bump on track, curves and braking), with stroke control for strength and deformation analysis. One of the main advantages in bench test is to reduce the time of the test, its repeatability, its cost saving and monitoring its performance through inspections and graphic records. The aim of the test is to evaluate the behavior in durability of the components, to analyze the possible failure mode and to be able to approve or reject the component based on the test's results. Criteria were set to accelerate the test by comparing signals measured on the field and bench test with deflection by stress curves. These criteria were maintained under extreme conditions for longer than the observed in previous and real applications. With this, the low incidence of strength and stroke is measured by optimizing the time of the test.
WIP Standard
2014-04-30
This SAE Recommended Practice provides procedures, and information to conduct vibration (impact) tests on lighting devices and their components as well as other safety equipment used on vehicles.
Technical Paper
2014-04-28
Christian Fischer, Rainer Wagener, Tobias Melz, Heinz Kaufmann
Abstract The fatigue life approach is the main topic of structural durability. Improved methods for the numerical fatigue analysis should be based on experimental results. In some fields of material testing progress in research are very hard to achieve. Especially the regime of amplitudes below the knee point of the SN-curve with a huge number of load cycles to failure is one of these challenges with respect to fatigue tests. With standard testing devices, 108 to 1010 cycles cannot be achieved in a reasonable time span because of their low and limited testing frequencies or their inflexible control systems concerning variable amplitude loading. For this reason, a new piezo based testing facility has been developed by Fraunhofer LBF which is capable to master this challenge. Built up with a high performance piezo actuator and a specially designed high frequency load frame this testing facility enables test frequencies up to 1.000Hz and locking forces of 10kN. The control technique realises variable load amplitudes as well as variable frequencies to test materials under realistic load sequences.
Technical Paper
2014-04-28
Y. S. Thipse
Abstract Designers and analysts need to compare and conduct synthesis for selection of materials based on their properties involving simulation, optimization and correlation with test data. An example is that of acoustic material properties such as random and normal incidence sound absorption coefficient and sound transmission loss. The international test standards necessitate having standard operating procedures for characterization of these materials. This procedure is quite involved and addresses steps including test data acquisition, post processing, calculations, classification, report generation and most importantly, storage of such innumerable material properties in a structured manner to facilitate ease of retrieval and updating of properties. It is also highly desirable to have a synergy of the databank directly with simulation tools. Further, all of these steps need to be accurate, non-speculative and quick. In order to address all these diverse requirements, three cases of powerful knowledge based utilities are hereby presented.
Standard
2014-04-25
This SAE Standard defines a method for evaluating the immunity of automotive electrical/electronic devices to radiated electromagnetic fields coupled to the vehicle wiring harness. The method, called Bulk Current Injection (BCI), uses a current probe to inject RF onto the wiring harness in the frequency range of 1 to 400 MHz. BCI is one of a number of test methods that can be used to simulate the electromagnetic field.
Standard
2014-04-16
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Technical Paper
2014-04-01
Lokanath Mohanta, Suresh Iyer, Partha Mishra, David Klinikowski
Abstract This paper illustrates a method to determine the experimental uncertainties in the measurement of tailpipe emissions of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and particulates of medium-, and heavy-duty vehicles when tested on a heavy-duty chassis dynamometer and full-scale dilution tunnel. Tests are performed for different chassis dynamometer driving cycles intended to simulate a wide range of operating conditions. Vehicle exhaust is diluted in the dilution tunnel by mixing with conditioned air. Samples are drawn through probes for raw exhaust, diluted exhaust and particulates and measured using laboratory grade emission analyzers and a microbalance. At the end of a driving cycle, results are reported for the above emissions in grams/mile for raw continuous, dilute continuous, dilute bag, and particulate measurements. An analytical method is developed in the present study to estimate the measurement uncertainties in emissions for a test cycle, due to the buildup of measurement uncertainties as they propagate through the system.
Technical Paper
2014-04-01
Rama Subbu, Baskar Anthony Samy, Piyush mani Sharma
Abstract Fierce competition in India's motorcycle industry has led to constant product innovation among manufacturers. This has resulted in the reduction of the lifecycle of the vehicle and has driven the manufacturers to alter the product design philosophies and design tools. One of the performance factors that have continued to challenge motorcycle designers is ride comfort in vertical and longitudinal direction. An essential tool in the motorcycle development process is the ability to quantify and grade the ride comfort behavior. This is performed either through subjective or objective tests. Subjective tests have the disadvantage that numerous factors influence test drivers' opinion while objective measures have the advantage of repeatability. However, objective methods provide only an approximate grading of vehicles and it is difficult to get consistent results that we can rely upon It is proposed that consistent result could be achieved if the motorcycle is run over the pave track in similar repeated cycles.
Technical Paper
2014-04-01
Ben Wen, Gregory Rogerson, Alan Hartke
Abstract Tire rolling resistance is one of tire performance indicator that represents a force needed to maintain the constant rolling of a tire. There are quite few methods and standards to measure tire rolling resistance, such as ISO-28585, ISO-18164, SAE-J1269, SAE-J2452, …. These tests have been used by tire companies, vehicle manufactures, and government agencies to evaluate tire rolling resistance performance. SAE-J1269 and SAE-J2452 are two popularly used multi-condition rolling resistance tests for passenger and light truck tires. Examining the test conditions and procedures of these two test standards showed that some key procedures and conditions from both standards are similar although there are many difference as well. The study presented here is to analyze test results from both tests and their correlation under certain conditions. If the correlation exists, one test may provide test results for both test conditions, therefore, test efficiency can be improved.
Technical Paper
2014-04-01
Louis Chretien, Adrien Laurino
Abstract The effect of cold-working, i.e. wire drawing, on the corrosion behavior of a 6101 and a 1370 aluminum alloy was investigated in NaCl solutions. For the both alloys, a “grain size - corrosion resistance” was highlighted. The preliminary works performed on Al-Cu welds showed two scales of heterogeneity and two scales of heterogeneity of media which are not considered by the current automotive specifications. Consequently, it seems to be necessary to establish new pertinent specifications to evaluate the new Al solutions.
Technical Paper
2014-04-01
Lijiao Yu, Hongyu Zheng, Changfu Zong
Abstract Nowadays, electric control steering system has been a main tendency. It consists of Electric Power Steering (EPS) system, Steer by Wire (SBW) system and Active Front Steering (AFS) system. EPS is more widely applied and its technology is more developed. By 2010, the cars equipped with EPS have reached almost 30%. This paper describes one integrated test bench which can test and verify electric control steering system. The main target of the paper is to design and set up a resistance loading system for the test bench referred. The paper takes EPS as a prototype to verify the designed resistance loading system. If the resistance loading system provides a precise simulated torque for the bench, the results of tests will be more approximate with vehicle tests and the acquired data will be reliable for electric control steering system's design and improvement. The linear electric cylinder applied in the loading system is used to provide simulated torque for the bench. The linear electric cylinder is combined with a kind of software independently designed.
Technical Paper
2014-04-01
Karsten Schmidt, Jens Harnisch, Denny Marx, Albrecht Mayer, Andre Kohn, Reinhard Deml
Abstract Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources. The current approach for timing analysis, often based on execution times and sequences of executions in Gantt charts, will not scale arbitrarily for high integration scenarios on multi-core systems.
Technical Paper
2014-04-01
Bjoern Lumpp, Mouham Tanimou, Martin McMackin, Eva Bouillon, Erica Trapel, Micha Muenzenmay, Klaus Zimmermann
Abstract Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail. A virtual (SiL) test bench is realized with which the diesel engine software functions can be calibrated without any special hardware, using industry- standard calibration tools like INCA from ETAS.
Technical Paper
2014-04-01
Omar Ramadan, Gary Webster, Luc Menard, Aaron Wilcox, Martin Kellen, Edgar Matida
Abstract This paper draws from several recent activities conducted at Advanced Engine Technology Ltd. (AET) which were aimed at improving the capability, precision, and durability of the Ignition Quality Tester (IQT™). The paper includes descriptions of the current Totally Automated Lab Model IQT™-TALM technology, recent experimental results such as updates to the IQT™ measurement capabilities and a summary of a Micro Intra-Laboratory Study (μILS) results. The results show that the standard deviation of Derived Cetane Number for most of the fuel samples tested was considerably lower than that obtained when those fuel samples were tested in the ASTM National Exchange Group and Energy Institute diesel fuel exchange programs.
Technical Paper
2014-04-01
Lawrence Banasky
Abstract In an effort to reduce the cost and time associated with bench level automotive electrical and electromagnetic compatibility (EMC) validation tests, a survey was created to request advice from the test labs that perform this testing. The survey focuses particularly on the development of the test plan document and the preparation of the test setup. The survey was sent to a targeted group of individuals with experience in performing this type of testing. The invitees work at laboratories that represent the majority of labs in the world that are authorized to perform component electrical / EMC validation testing for automotive original equipment manufacturers (OEMs). There were a significant number of responses; it is possible that representatives from all of the invited laboratories responded. The survey results provide demographic information about the test labs and their participants. The participants possess a tremendous amount of test experience and are therefore qualified to provide recommendations on the subject.
Technical Paper
2014-04-01
Claudine Miraval, Pierre-Olivier Santacreu, Saghi Saedlou, Antoine Acher
Abstract The evolution of emission control standards on particulate matter and NOx has led to a significant increase of complexity of the diesel exhaust line which includes catalytic converter, particulate filter and selective catalytic reduction systems. The exhaust line is no longer a component that customers can change easily; its durability has to be studied for longer lifespan and if possible to be predicted. From a corrosion point of view, emission control systems have led to more and more severe conditions for stainless steel material used in the exhaust line. In particular, mufflers are exposed to higher temperature during the regeneration of the particle filter and also to acidification of gas condensates due to high sulphur content that can be found in diesel. To assess material performance in these severe conditions, a test method was developed to simulate the environment of the inner part of a muffler through corrosion cycles composed of oxidation steps in a furnace and dipping steps in a synthetic condensate.
Technical Paper
2014-04-01
Derek R. Braden, David M. Harvey
Abstract There is a continual growth of test and validation in high reliability product applications such as automotive, military and avionics. Principally this is driven by the increased use and complexity of electronic systems deployed in vehicles, in addition to end user reliability expectations. Higher reliability expectations consequently driving increased test durations. Furthermore product development cycles continue to reduce, resulting in less available time to perform accelerated life tests. The challenge for automotive electronic suppliers is performing life tests in a shorter period of time whilst reducing the overall associated costs of validation testing. In this paper, the application of prognostic and health monitoring techniques are examined and a novel approach to the validation and testing of automotive electronics proposed which it is suggested may be more cost effective and efficient than traditional testing. The holistic method explored in this paper fuses real time test data obtained during the monitoring of products throughout an environmental exposure with key factors from manufacturing and product design.
Technical Paper
2014-04-01
Valerie Earlene Bumbaca
Abstract Virtually every major automaker has announced intentions of producing an electric vehicle (EV). Hyundai Motor Group has also announced plans to sell an electric vehicle in the next several years. There is strong and increasing support for electric vehicles in the USA due to an interest in protecting the environment, limiting dependence on oil, and reducing the associated cost of petroleum-based transportation. From a durability perspective, battery performance and longevity are significant concerns. In order to better prepare for upcoming electric vehicles, Hyundai-Kia America Technical Center, Inc (HATCI) Vehicle Evaluation group is developing an EV durability test and battery lifecycle laboratory test based on real world EV customer usage. Since there is limited availability of real world customer information for electric vehicles, a program has been started to collect EV customer usage data. This will be correlated with test inputs for both road and lab testing. An outside vendor has been contracted to collect data on customer usage from existing Nissan Leaf and Chevrolet Volt customers.
Technical Paper
2014-04-01
Mindy Heading, Douglas Stein, Jeff Dix
Abstract Ejection Mitigation testing is now required by the U.S. government through FMVSS 226 [1]. FMVSS 226 contains the requirement of using a linear guided headform in a horizontal impact test into the inflated curtain, or other ejection mitigation countermeasure that deploys in the event of a rollover. The specification provides dimensions for a featureless headform [2] but there are limited specifications for the headform skin surface condition. In the “Response to Petitions” of the 2011 Final Rule for FMVSS 226 [3], the NHTSA declined the option to include a headform cleaning procedure. This research presents a case study to quantify the effect of changes in the friction between the headform and curtain on the measured excursion. The study presented here shows that a change in friction between the headform and curtain can affect excursion values by up to 135 millimeters (mm).
Viewing 1 to 30 of 2951

Filter

  • Book
    7
  • Magazine
    29
  • Technical Paper
    2725
  • Standard
    190
  • Subscription
    0
  • Collection
    0
  • Article
    0