Display:

Results

Viewing 1 to 30 of 2978
2015-01-14
Technical Paper
2015-26-0159
Tripti Jain, Tanvee Adhikari
During vehicle development, numerous tests are done to ensure safety & durability of the vehicle. One such test prescribed by regulation (IS 12009:1995) is side door intrusion test (SDIT). This test evaluates strength requirement of a side door of passenger cars to minimize the safety hazards caused by intrusion into passenger compartment in a side impact accident viz., initial, intermediate and peak crush resistance. In current scenario, the passenger car manufacturers are striving hard on cost reduction by reducing the development cost. Thus, prediction of the exact vehicle performance before its prototype stage is vital and can be achieved with the help of Computer Aided Engineering (CAE) During the SDIT, the load is applied to the door in inward direction. This impact force is resisted by the door assembly, while door is pivoted at door latch and hinge.
2015-01-14
Technical Paper
2015-26-0235
Raju P Soudatti, Ragunathan Amarnath, Ramesh Harish
This paper deals the verification & Validation of passenger seat of buses for life cycle requirement. Through various methodologies adopted from Data collection, CAE verification and physical validation to verify the seat in virtual environment. Generally it is observed that in City Buses most of the time Passenger seat leg mounting area failures occurs in buses used for typically more than 3years. This fatigue failure doesn't get captured in either Anchorage test or limited vibration test. Passenger seats durability should be equal to vehicle life which is 10L or 12 Years of life span. Testing on Physical vibration (Rig) machine is time consuming and costly most of the time Machine availability for testing will be an issue to validate alternate seat proposals. There is need to establish a correlation between Physical testing and CAE simulation so that alternate proposals can be easily and quickly verified using CAE alone.
2015-01-14
Technical Paper
2015-26-0188
Prashant Khapane, Uday Ganeshwade, Kevin Carvalho
Vehicle water wading capability refers to vehicle functional part integrity (e.g. engine under-tray, bumper cover, plastic sill cover etc.) when travelling through water. Wade testing involves vehicles being driven through different depths of water at various speeds. The test is repeated and under-body functional parts are inspected afterwards for damage. Lack of CAE capability for wading equates to late detection of failure modes which inevitably leads to expensive design change, and potentially affects program timing. It is thus of paramount importance to have a CAE capability in this area to give design loads to start with. Computational fluid dynamics (CFD) software is used to model a vehicle travelling through water at various speeds. A non-classical CFD approach was deemed necessary to model this. To validate the method, experimental testing with a simplified block was done and then verified with CFD modelling.
2015-01-14
Technical Paper
2015-26-0160
Adria Ferrer, Stefanie de Hair, Oliver Zander, Rikard Fredriksson, Swen Schaub, Frederic Nuss, Marie Caspar
Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. Though the level of safety for pedestrians, as established through Euro NCAP and others, has significantly increased over the last years, currently still more than 20% of road fatalities correspond to pedestrians. The test procedures and assessment methods for pedestrian safety show potential for further improvement and thus should be adjusted accordingly. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more efficient and reliable safety systems. This paper reflects the related work carried out within the AsPeCSS project.
2014-12-10
WIP Standard
ARP4050A
Characteristics of vertical hard-bearing balancing machines are described which make such machines suitable for gas turbine rotor balancing.

This document specifies the following: a. general dimensions and capacities; b. performance requirements; c. balancing speed ranges; d. drive power requirements; e. balancing machine spindle flange dimensions; and f. test procedures.

Proving rotors and associated test masses required for the performance tests are described in ARP4162.

Test procedures are described in detail and test log samples along with a polar diagram for evaluating the test results are furnished.

The predecessor document ARP588, ISO 2953, and the available technology of hard-bearing balancing machines have been considered in the preparation of this document.

This document was developed for hard-bearing balancing machines but may also be used for existing soft-bearing balancing machines.

2014-12-02
Standard
J2087_201412
This SAE Standard provides test procedures, requirements, and guidelines for a daytime running light (DRL) function.
2014-12-02
Standard
J2139_201412
This SAE Recommended Practice provides standardized laboratory tests, test methods, and performance requirements applicable to signal and marking devices used on vehicles 2032 mm or more in overall width.
2014-12-01
Standard
ARP6265
This document describes a recommended test procedure to assess the burst characteristics of tires used on 14CFR Part 25 or similar transport airplanes.
2014-11-25
Standard
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
2014-11-25
Standard
J267_201411
This SAE Recommended Practice provides minimum performance requirements and uniform laboratory procedures for fatigue testing of wheels and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose vehicles. Users may establish design criteria exceeding the minimum performance requirement for added confidence in a design. The cycle requirements noted in Tables 1 and 2 are based on Weibull statistics using 2 parameter, median ranks, 50% confidence level and 90% reliability, and beta equal to 2, typically noted as B10C50. For other wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles, see SAE J328. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. For bolt together military wheels, see SAE J1992. This document does not cover other special application wheels and rims.
2014-11-20
Standard
J2378_201411
This SAE Recommended Practice provides instructions and test procedures for air braked trailers and dollies used in single and multiple trailer combinations on highway. This document is not intended for off-highway application.
2014-11-20
Standard
ARP1827C
This SAE Aerospace Recommended Practice (ARP) delineates two complementary filter element performance ratings: (1) dirt capacity, and (2) filtration efficiency, and corresponding test procedures. It is intended for non-cleanable (disposable), fine fuel filter elements used in aviation gas turbine engine fuel systems.
2014-11-11
Standard
J2377_201411
This SAE Recommended Practice (RP) provides test procedures for air braked trucks and truck-tractors used to tow single and multiple trailer combinations on highways. This RP is not intended for off-highway applications.
2014-11-06
Standard
ARP777A
It is intended that this ARP will set down guidelines for the development and test of reliable rotary vane and/or linear gas actuators. Specific operational and test requirements shall be specified in a detail specification. The areas to be discussed are: requirements (performance, environment, life, and reliability), design and fabrication, and test considerations.
2014-10-28
Standard
J384_201410
This SAE Recommended Practice specifies performance requirements and test procedures for the strength and location of seat belt assembly anchorages. It applies to seat belt anchorages attached to vehicle body structure or to seat assemblies in the vehicle. Design Considerations are specified in SAE J383.
2014-10-27
Standard
J1801_201410
This SAE Recommended Practice provides the method to assign numerical values of brake effectiveness, using data from single station inertia dynamometer effectiveness tests, and to identify a uniform procedure to mark these values on the edge of brake blocks in excess of 12.7 mm (0.51 in) in thickness. The edge markings are intended to provide relevant and meaningful data on the normal and hot effectiveness of brake blocks, using the reference full size brake assembly, to aid in the characterization of these brake block frictional properties. This edge marking methodology is intended to permit accurate identification of the effectiveness values over the full wear life of the brake block. This is accomplished by means of permanent markings on one edge of the brake block.
2014-10-27
Standard
J1802_201410
This SAE Recommended Practice provides the test procedure and methods to calculate the effectiveness of brake blocks, using an inertia dynamometer. To minimize testing variability, and to optimize standardization and correlation, a single, high volume size of brake block is specified (FMSI No. 4515E) and evaluated in a reference S-cam brake assembly of 419 mm x 178 mm (16.5 in x 7.0 in) size, using a specified brake drum.
2014-10-24
Standard
J1578_201410
This test procedure provides a standard method for evaluating the side stand retraction performance of a side stand/motorcycle combination. This test procedure applies to any two-wheeled motorcycle without a sidecar, equipped with a side stand, and intended for highway use. (See SAE J213.) This SAE Recommended Practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this document.
2014-10-13
Technical Paper
2014-01-2667
Ida Truedsson, William Cannella, Bengt Johansson, Martin Tuner
Abstract This study examines fuel auto-ignitability and shows a method for determining fuel performance for HCCI combustion by doing engine experiments. Previous methods proposed for characterizing HCCI fuel performance were assessed in this study and found not able to predict required compression ratio for HCCI auto-ignition (CRAI) at a set combustion phasing. The previous indices that were studied were the Octane Index (OI), developed by Kalghatgi, and the HCCI Index, developed by Shibata and Urushihara. Fuels with the same OI or HCCI Index were seen to correspond to a wide range of compression ratios in these experiments, so a new way to describe HCCI fuel performance was sought. The Lund-Chevron HCCI Number was developed, using fuel testing in a CFR engine just as for the indices for spark ignition (research octane number and motor octane number, RON and MON) and compression ignition (cetane number, CN).
2014-10-13
Journal Article
2014-01-2664
Akira Iijima, Naoya Ito, Takashi Shimada, Masanori Yamada, Hideo Shoji
Abstract Knocking combustion experiments were conducted in this study using a test engine that allowed the entire bore area to be visualized. The purpose was to make clear the detailed characteristics of knocking combustion that occurs accompanied by cylinder pressure oscillations when a Homogeneous Charge Compression Ignition (HCCI) engine is operated at high loads. Knocking combustion was intentionally induced by varying the main combustion period and engine speed. Under such conditions, knocking in HCCI combustion was investigated in detail on the basis of cylinder pressure analysis, high-speed photography of the combustion flame and spectroscopic measurement of flame light emissions. The results revealed that locally occurring autoignition took place rapidly at multiple locations in the cylinder when knocking combustion occurred. In that process, the unburned end gas subsequently underwent even more rapid autoignition, giving rise to cylinder pressure oscillations.
2014-10-13
Journal Article
2014-01-2642
Masaki Kuribayashi, Yuta Mizutani, Yutaro Ishizuka, Natsuki Taki, Tetsuya Aizawa
Abstract For better understanding of soot formation and oxidation processes in diesel combustion, effects of ambient oxygen concentration on in-flame diesel soot particle properties including concentration, size, number density and morphology were investigated in a constant volume combustion vessel via simultaneous LII (Laser-Induced Incandescence) / LS (Laser Scattering) imaging techniques and TEM (Transmission Electron Microscopy) analysis. An analysis of LII and LS images yielded 2-dimensional distribution images of concentration, size and number density of soot particles in diesel spray flame, based on a practical assumption that LII and LS signals are proportional to the soot particle size to the power of 3 and 6, respectively.
2014-10-13
Technical Paper
2014-01-2558
Qiyou Deng, Richard Burke
Abstract Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell.
2014-10-13
Technical Paper
2014-01-2811
Michal Vojtisek-Lom, Martin Pechout, Michael Fenkl
Abstract The paper focuses on portable “on-board” instrumentation and methods for evaluation of exhaust emissions from scooters and various small machinery under real-world driving conditions. Two approaches are investigated here. In one, a miniature on-board system mounted on the equipment itself performs online measurements of the concentrations of the pollutants of interest (HC, CO, CO2, NOx, some property of particulate matter), and measurement or computation of the intake air flow. This approach has been used on a 50 cm3 scooter fitted with a 14-kg on-board system and driven on local routes. Measured concentrations of gaseous compounds, particle mass and total particle length were multiplied with the corresponding intake air flow computed from measured engine rpm, intake air manifold pressure and temperature. In the second approach, a full-flow dilution tunnel, gas analyzers and particle measurement or sampling devices are mounted on an accompanying hand cart or vehicle.
2014-10-13
Journal Article
2014-01-2840
Juan J. Hernández, Rosario Ballesteros, Javier Barba, José Guillén-Flores
Abstract In order to reduce the pollutant emissions (NOx and PM) of diesel engines, the addition of small gaseous fuel amounts or dual mode operation have been proved as potential techniques. This paper is focused on a detailed characterization of the particles emitted from a single cylinder diesel engine when part of the diesel fuel (5 to 20% by energy) is replaced by a gaseous fuel (producer gas, mainly composed by H2, CO, CH4 and inert compounds) coming from biomass steam gasification. The engine was run at constant speed and torque and different EGR rates. Particle samples were collected by means of fiber glass filters placed in a dilution mini-tunnel. Simultaneously, during tests, part of the exhaust gas was conducted to an SMPS to determine the particle size distribution.
2014-10-08
Standard
ARP6200
This SAE Aerospace Recommended Practice (ARP) describes the recommended tests and their associated test means for commercial aircraft hydraulic systems at the system level that are required to demonstrate compliance with the 14 CFR Part 25 and EASA CS 25 airworthiness regulations, and to show that the required level of maturity at the aircraft entry into service (EIS) has been achieved.
2014-10-08
Standard
AS5127/1C
This SAE Aerospace Standard (AS) describes test methods to determine the application and performance properties of two-component sealing compounds. It shall be used in conjunction with AS5127 and the applicable material specification. When modifications to these test methods are called out in material specifications, the material specification shall take precedence.
2014-09-30
Standard
J2932_201409
This document provides test performance requirements for air disc brake actuators for service and combination service parking brake actuators with respect to function, durability and environmental performance when tested according to SAE J2902.
2014-09-30
Technical Paper
2014-01-2306
Mathialagan Balaji, Hemant Bhatkar, Jeya Kumar Ranjith Kumar, Ananthan Anbazhagan, Pramod Palkar
Abstract Rear axles are subjected to bending and torsion loads out of which Bending loads are predominant. In case of Off road vehicles Bi Axial- combination of Bending and torsion loads were predominant, because of axle construction and vehicle usage pattern. Defined test procedures are available for bending durability and torsional durability evaluation of axles. In this experiment, new test methodology was developed for Bi Axial durability evaluation of Off road vehicle rear axle with single servo hydraulic linear actuator. For creating Bi Axial load condition, we may need multiple actuators and complicated fixtures. Axle wheel end is constrained at an angle with suitable fixtures for creating the bending and torsional forces together in the axle. Servo hydraulic linear actuator with suitable loading arm is used for applying the test torque in the axle input flange.
2014-09-29
Standard
J1374_201409
Applies to hydraulic seals used to seal the rods of hydraulic cylinders which are components of Off-Road Self-Propelled Work Machines defined in SAE J1116.
2014-09-28
Journal Article
2014-01-2521
Jaroslaw Grochowicz, Carlos Agudelo, Shanglei Li, Harald Abendroth, Karl-Heinz Wollenweber, Achim Reich
Abstract The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Viewing 1 to 30 of 2978

Filter