Criteria

Display:

Results

Viewing 1 to 30 of 1310
2016-06-15
Technical Paper
2016-01-1805
Florian Zenger, Clemens Junger, Manfred Kaltenbacher, Stefan Becker
Abstract A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
2016-04-05
Technical Paper
2016-01-0907
Matthew Blanks, Nathan Forster
Abstract In 2012, NHTSA and EPA extended Corporate Average Fuel Economy (CAFE) standards for light duty vehicles through the 2025 model year. The new standards require passenger cars to achieve an average of five percent annual improvement in fuel economy and light trucks to achieve three percent annual improvement. This regulatory requirement to improve fuel economy is driving research and development into fuel-saving technologies. A large portion of the current research is focused on incremental improvements in fuel economy through technologies such as new lubricant formulations. While these technologies typically yield less than two percent improvement, the gains are extremely significant and will play an increasing role in the overall effort to improve fuel economy. The ability to measure small, but statistically significant, changes in vehicle fuel economy is vital to the development of new technologies.
2016-04-05
Journal Article
2016-01-0984
Venkatraman Mahadevan, Suresh Iyer, David Klinikowski
Abstract This paper proposes a method to recover species concentrations at the tail pipe exit of heavy-duty vehicles during chassis dynamometer tests, and investigates its effect in the calculation of emissions from their raw exhaust streams. It was found that the method shown in this paper recovered the sharp peaks of the gas species. The effect on calculations was significant, as time-variant raw exhaust flow rate and emissions concentrations data are acquired continuously during a test (at 10 Hz), and their product is integrated during calculations. The response of the analyzer is delayed due to the time taken for transport of the sample gases from the probe tip to the analyzer, and deformed due to mixing and diffusion during this transport. This ‘convolution’ of the concentration data stream introduces an error in the final result, calculated in g/mile.
2016-04-05
Technical Paper
2016-01-0029
Chuanliangzi Liu, Bo Chen, Ming Cheng, Anthony Champagne, Keyur Patel
Abstract The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
2016-04-05
Technical Paper
2016-01-0045
Takanori Uno, Akahori Ichiro, Yoichiro Hara
Abstract In this paper, consideration is made to create a simulation model of the BCI test method, which is one of the EMC evaluation methods for in-vehicle electronic devices, and an intrinsic model of a BCI probe is provided. Using this model, it is demonstrated that when the impedance of the BCI probe is sufficiently high, the BCI probe serves as a transformer with a winding ratio of 1:1, and the admittance of a line or a load connected to each wire becomes proportional to the magnitude of current flowing in each wire. This model can also be applied when the leakage inductance inside the BCI probe is taken into consideration. The validity of this model is verified by experiment using a jig which can clamp multiple wires. In addition, by using this model, it is demonstrated that the S-parameters for dozens of wires clamped in the BCI probe can be generated using the S-parameter measurement results from when one wire is in the BCI probe.
2016-04-05
Technical Paper
2016-01-0055
Mark Steffka, Cyrous Rostamzadeh
Abstract Automotive systems can generate un-intentional radio frequency energy. The levels of these emissions must be below maximum values set by the Original Equipment Manufacturer (OEM) for customer satisfaction and/or in order to meet governmental requirements. Due to the complexity of electromagnetic coupling mechanisms that can occur on a vehicle, many times it is difficult to measure and identify the noise source(s) without the use of an electromagnetic interference (EMI) receiver or spectrum analyzer (SA). An efficient and effective diagnostic solution can be to use a low-cost portable, battery powered RF detector with wide dynamic range as an alternative for automotive electromagnetic compatibility (EMC) and design engineers to identify, locate, and resolve radio frequency (RF) noise problems. A practical circuit described here can be implemented easily with little RF design knowledge, or experience.
2016-04-05
Technical Paper
2016-01-0052
Jihas Khan
Abstract HILS is a proven and essential part of the embedded product development life cycle which strives to reduce effort, time and cost spent on automotive validation activities. An efficient HILS system allows to create a precise simulation environment for the ECU which is made to believe that it is sitting inside a real vehicle and there by the intended functionalities implemented in the same could be tested even before the vehicle prototypes or other ECUs or sensors and actuators are available. An inefficient and faulty HILS system provides erroneous test results which could lead to wrong inferences. This paper is proposing a standardized process flow aided by specific documentation and design concepts which validates that the test system designed is robust and caters to the actual requirement. The Design stage starts by a requirement gathering phase where the analysis of the device under test is executed in detail.
2016-04-05
Technical Paper
2016-01-1534
Rudolf Reichert, Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan, Daniel Brown
Abstract A detailed finite element model of a 2012 Toyota Camry was developed by reverse engineering. The model consists of 2.25M elements representing the geometry, thicknesses, material characteristics, and connections of relevant structural, suspension, and interior components of the mid-size sedan. This paper describes the level of detail of the simulation model, the validation process, and how it performs in various crash configurations, when compared to full scale test results. Under contract with the National Highway Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA), the Center for Collision Safety and Analysis (CCSA) team at the George Mason University has developed a fleet of vehicle models which has been made publicly available. The updated model presented is the latest finite element vehicle model with a high level of detail using state of the art modeling techniques.
2016-04-05
Journal Article
2016-01-1577
Tateru Fukagawa, Shinnosuke Shimokawa, Eiji Itakura, Hiroyuki Nakatani, Kenichi Kitahama
Abstract The aerodynamic stability of energy-saving, lightweight, and low-drag vehicles is reduced by crosswind disturbances. In particular, crosswinds cause unsteady motion in vehicles with low-drag body shapes due to aerodynamic yaw moment. To verify fluctuations in the unsteady aerodynamic forces of a vehicle, a direct measurement method of these forces in a crosswind test was established using inertial force and tire load data. The former uses an inertia sensor comprised of a gyro, acceleration sensor, and GPS sensor, and the latter uses a wheel force sensor. Noise in the measurement data caused by the natural frequency of the tires was reduced using a spectral subtraction method. It was confirmed that aerodynamic data measured in the crosswind test corresponded to wind tunnel test data. Numerical expressions were defined to model the unsteady aerodynamic forces in a crosswind.
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
2016-04-05
Technical Paper
2016-01-1447
Qiang Yi, Stanley Chien, Jason Brink, Wensen Niu, Lingxi Li, Yaobin Chen, Chi-Chen Chen, Rini Sherony, Hiroyuki Takahashi
Abstract As part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles.
2016-04-05
Journal Article
2016-01-1374
Julian Wiederer, Lukas Leitner, Christian Endisch, Hans Reiss
Abstract During series production of modern combustion engines a major challenge is to ensure the correct operation of every engine part. A common method is to test engines in end-of-line (EOL) cold test stations, where the engines are not fired but tugged by an electric motor. In this work we present a physically based 0D model for dynamic simulation of combustion engines under EOL test conditions. Our goals are the analysis of manufacturing faults regarding their detectability and the enhancement of test procedures under varying environmental conditions. Physical experiments are prohibitive in production environments, and the simulative approach reduces them to a minimum. This model is the first known to the authors exploring advanced engine test methods under production conditions. The model supports a wide range of manufacturing faults (with adjustable magnitude) as well as error-free production spread in engine components.
2016-04-05
Technical Paper
2016-01-1355
Jeffrey R. Hodgkins, Walter Brophy, Thomas Gaydosh, Norimasa Kobayashi, Hiroo Yamaoka
Abstract Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
2016-04-05
Technical Paper
2016-01-1359
R. Pradeepak, Shyamsundar Kumbhar, Nainishkumar Barhate
Abstract At present, vehicle testing in laboratory is one of the important phase to quicken the product validation process. In the early phase of laboratory testing it is required to evaluate the strength of the vehicle structure through physical rig setup which represents the consumer’s usage. Two and Multiple poster input excitation are among the laboratory rig testing to represent the actual road are used to predict the durability of vehicle components. The road inputs through the poster are known as drive files, a feedback controlled system which reproduces the track or real road recorded specimen’s accelerations, displacements and strains in laboratory. Derivation of drive files in poster testing requires iteration of physical specimen to exactly replicate the actual road.
2016-04-05
Journal Article
2016-01-1598
Frank Meinert, Kristian Johannessen, Fernando Saito, Bongha Song, Jewel Barlow, David Burton, Taehwan Cho, Luis Fernando Gouveia de Moraes
Abstract Wind tunnel testing of reduced-scale models is a valuable tool for aerodynamic development during the early stages of a new vehicle program, when basic design themes are being evaluated. Both full-and reduced-scale testing have been conducted for many years at the General Motors Aerodynamics Laboratory (GMAL), but with increased emphasis on aerodynamic drag reduction, it was necessary to identify additional facilities to provide increased test capacity. With vehicle development distributed among engineering teams around the world, it was also necessary to identify facilities local to those teams, to support their work. This paper describes a cooperative effort to determine the correlation among five wind tunnels: GMAL, the Glenn L.
2016-04-05
Technical Paper
2016-01-1600
Pruthviraj Mohanrao Palaskar, Vivek Kumar, Rohit Vaidya
Abstract Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
2016-04-05
Technical Paper
2016-01-1007
Benjamin Ellies, Charles Schenk, Paul Dekraker
Abstract As part of its technology assessment for the upcoming midterm evaluation (MTE) of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (LD GHG) emissions standards, EPA has been benchmarking engines and transmissions to generate inputs for use in its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) model, a physics-based, forward-looking, full vehicle computer simulation tool. One of the most efficient engines today, a 2.0L Mazda SkyActiv engine, is of particular interest due to its high geometric compression ratio and use of an Atkinson cycle. EPA benchmarked the 2.0L SkyActiv at its National Vehicle and Fuel Emissions laboratory. EPA then incorporated ALPHA into an engine dynamometer control system so that vehicle chassis testing could be simulated with a hardware-in-the-loop (HIL) approach.
2016-04-05
Technical Paper
2016-01-0479
Kuniaki Goto, Takashi Kondo, Masakiyo Takahira, Eiji Umemura, Masashi Komada, Yasuhiko Nishimura
Abstract Generally, pass-by noise levels measured outdoors vary according to the influence of weather conditions, background noise and the driver’s skill. Manufactures, therefore, are trying to reproduce proving ground driving conditions on a chassis dynamometer. The tire noise that occurs on actual road surfaces, however, is difficult to reproduce in indoor tests. In 2016, new pass-by noise regulations (UN R51-03) will take effect in Europe, Japan and other countries. Furthermore, stricter regulations (2dB) will take effect in 2020. In addition to the acceleration runs required under current regulations, UN R51-03 will require constant speed runs. Therefore, an efficient measurement methods are necessary for vehicle development. To solve the above mentioned issues, an indoor evaluation system capable of reproducing the tire noise that occurs on road surfaces has been developed.
2016-04-05
Journal Article
2016-01-1611
Masaki Nakagawa, Stephan Kallweit, Frank Michaux, Teppei Hojo
Abstract This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
2015-11-09
Technical Paper
2015-22-0001
Narayan Yoganandan, John R. Humm, Frank A. Pintar, Mike W. J. Arun, Heather Rhule, Rodney Rudd, Matthew Craig
While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Three-point belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given.
2015-09-06
Technical Paper
2015-24-2542
Carmelina Abagnale, Salvatore Strano, Massimo Cardone, Paolo Iodice, Mario Terzo, Giovanni Vorraro
Abstract The paper describes the development of an innovative test rig for the evaluation of e-bikes in terms of energetic performances and control system. The test rig has been realized starting from a commercial cyclist training system and suitably modified. The test rig is able to reproduce an aforethought route or paths acquired during road tests. It is possible to measure the performance of the e-bike in terms of instantaneous power and speed, by the installed sensors and data acquisition system. The experimental test rig can simulate the resistant torque of a predetermined track and it aims to test and to optimize the control strategy available on the electronic control unit (ECU). An important feature of the system is represented by the possibility to adopt a hardware in the loop approach for the testing of the e-bike and of its control. Indeed, the whole control algorithm can be implemented on a suitable controller board able to execute real time processes.
2015-09-06
Technical Paper
2015-24-2419
Riccardo Amirante, Caterina Casavola, Elia Distaso, Paolo Tamburrano
A simple, cheap and effective way of measuring the pressure inside the cylinders of internal combustion engines is proposed in this paper. It is well known that the in-cylinder pressure is one of the most significant variables describing the combustion status in internal combustion engines; therefore, if the measured value of the actual pressure in the combustion chamber is used as a feedback variable for closed loop monitoring and control techniques, it will be possible both to improve engine performances and to reduce fuel consumptions and emissions. However, to date such a pressure-based control strategy has been limited by costs, reliability and lifetime of commercially available cylinder pressure sensors. To overcome these limitations, the present paper proposes a very simple and low cost experimental device for measuring the pressure inside the combustion chamber, developed for engine control and monitoring applications.
2015-06-15
Technical Paper
2015-01-2187
Mark A. Gehringer, Keith Thompson
Abstract This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a rear wheel drive vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback.
2015-06-15
Technical Paper
2015-01-2278
Rohit Ravindran, Debajit Das, Keval Kamani, P Sivaraman, Gyan Arora
Abstract Torsional vibration is a characteristic phenomenon of automotive powertrains. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertrains has become important. In this context, accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in-house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
2015-06-15
Journal Article
2015-01-2284
Chris Hocking, Simon Antonov, Arsham Shahlari
Abstract The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
2015-06-15
Technical Paper
2015-01-2246
Kurt Veggeberg, Mike Denton
Abstract This is an overview of the development of a portable, real-time acoustic beamformer based on FPGA (Field Programmable Gate Arrays) and digital microphones for noise source identification. Microphone arrays can be a useful tool in identifying noise sources and give designers an image of noise distribution. The beamforming algorithm is a classic and efficient algorithm for signal processing of microphone arrays and is the core of many microphone array systems. High-speed real-time beamforming has not been implemented much in a portable instrument because it requires large computational resources. Utilizing a beamforming algorithm running on a Field Programmable Gate Array (FPGA), this camera is able to detect and locate both stationary and moving noise sources. A high-resolution optical camera located in the middle of the device records images at a rate of 25 frames per second.
2015-06-15
Journal Article
2015-01-2154
Franck Hervy, Severine Maguis, François Virion, Biagio Esposito, Hugo Pervier
Abstract The A06 test facility designed for combustor testing in altitude has been modified to be converted in an icing facility for probe testing. The objective was to be able to simulate ice crystals conditions at high altitude, high Mach number and low temperature. This facility has been upgraded in several steps extending the median size of the ice crystals produced and the ice water content range. The aero-thermal and icing capabilities have been assessed during commissioning tests. Finally, in order to prepare the calibration of the facility, some measurement techniques for cloud characterization have been selected or developed, especially for cloud uniformity measurement.
2015-06-15
Technical Paper
2015-01-2142
Colin Hatch, Roger Gent, Richard Moser
Abstract Low power ice protection systems are an important research area that is highlighted in the EU Clean Sky programme. In this paper an icing wind tunnel test of a full-scale wing incorporating both an electro-thermal and a hybrid electro-thermal electro-mechanical system is described. A description of a software tool to analyse both systems as full 3D models is also given. Preliminary comparisons of test data and prediction are shown both for the electro-thermal system and the hybrid system. Initial comparisons show a reasonable correlation in the main with recommendations for a structure tear-down to identify exact internal transducer locations. Recommendations are also made with regard to undertaking tests to determine a more consistent set of mechanical failure properties of ice. Future work in the development of the tool is also discussed.
2015-04-14
Technical Paper
2015-01-1092
Gabriela Achtenova, Ondrej Milacek
Abstract The purpose of the article is to describe different possibilities of the innovative concept of the closed-loop test rig. The performed tests will be demonstrated with the example of measured data. Firstly the article will describe in detail the design of the test stand and both torque units. The power flow in the closed-loop circuit will be described and measured to find out the power losses of all parts. The measurement will be done for manual and planetary pretensioning mechanism. The comparison of the overall efficiency and demanded power for both torque units will be given. For evaluation of gearbox efficiency, the magnitude of power losses will be evaluated for different revolutions, torque levels and shifted speeds. For a long term tests, the unmanned operation is prepared. For this purpose is the stand equipped with electromechanical shift robots. The description of its concept and functioning will be part of the paper.
2015-04-14
Technical Paper
2015-01-0681
Yuki Ono, Kenji Matsumoto
Abstract The reciprocating frictional test is a common approach for screening the materials of the piston and sleeve of an automobile engine. The frictional speed of this test is, however, limited mainly by the vibration of test apparatus due to the absence of damping factors in engines. Considering that the frictional velocity between the piston and sleeve reaches around 20 m/s, common test conditions at less than 2 m/s are not sufficient to understand the real phenomena at a frictional interface. We therefore developed a high-speed reciprocating test apparatus that can operate at a much higher speed range and examined two materials used for piston rings and sleeves. For the piston ring material, nitrided SUS440C was used. Plates were made of centrifugal cast iron FC250 or cast aluminum AC2B, which were coated with Nikasil. The experimental results showed that the lubrication regimes of the two plate materials were different even at the same reciprocating speeds.
Viewing 1 to 30 of 1310

Filter