Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 127
CURRENT
2017-08-18
Standard
J443_201708
This SAE Recommended Practice Specification provides the procedures for using test strips per SAE J442 for peening processes.
CURRENT
2017-08-09
Standard
J442_201708
This SAE standard defines requirements for equipment and supplies to be used in measuring shot peening arc height and other surface enhancement processes. Guidelines for use of these items can be found in SAE J443 and SAE J2597.
2017-07-18
WIP Standard
J2986
This Recommended Practice provides a common method to measure wear of friction materials (brake pad assemblies and brake shoes) and their mating part (brake rotor or brake drum). These wear measurements apply to brakes fitted on passenger cars and light trucks up to 4,540 kg of Gross Vehicle Weight Rating or vehicles category M1 on the European Community.
CURRENT
2017-07-18
Standard
ARP4386D
This SAE Aerospace Recommended Practice (ARP) provides the technical terms and nomenclature, together with their definitions and abbreviations/acronyms that are used in aerospace fluid power, actuation and control systems. NOTE: ARP490 and ARP4493 are sources for definitions specifically for electrohydraulic servovalves.
CURRENT
2017-05-22
Standard
AS39029/91B
SCOPE IS UNAVAILABLE.
2017-05-18
WIP Standard
J1979
SAE J1979/ISO 15031-5 set includes the communication between the vehicle's OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD.
2017-05-18
WIP Standard
J1979DA
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
CURRENT
2017-04-18
Standard
J1696_201704
This SAE Standard defines the requirements for fluid to be used in the SAE Fuel Filter Test Procedures.
CURRENT
2017-04-11
Standard
AMS3159G
This specification covers a liquid oxygen compatible gas-leak detecting compound in the form of a liquid.
CURRENT
2017-04-11
Standard
AMS3021E
This specification covers a neopentyl polyol ester fluid.
CURRENT
2017-03-22
Standard
J1286_201703
This method covers electric outboards that are rated in terms of static thrust.
CURRENT
2017-03-17
Standard
ARP4162B
This SAE Aerospace Recommended Practice (ARP) specifies a series of balancing machine proving rotors and related test weights as directly required for the evaluation of gas turbine rotor balancing machines.
CURRENT
2017-02-16
Standard
J1979_201702
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers.
CURRENT
2017-02-16
Standard
J1979DA_201702
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
2016-11-16
WIP Standard
J2707
This SAE Recommended Practice specifies a dynamometer test procedure to be used for the measurement of automotive service brake linings and disc brake pads wear. Special motor vehicles and motorcycles are excluded from the application. Trailers with nominal Gross Combination Weight Rating exceeding 40 tons are also excluded from this Recommended Practice.
CURRENT
2016-11-15
Standard
J1281_201611
This SAE Standard establishes the procedure for determining the operator duty cycle sound pressure level Lodc to which operators of powered recreational craft up to 24 m in length are exposed during typical operation as determined by marine engine duty cycle studies. This document describes the instrumentation, the required calibration procedures, the test site, the specifications for “standard craft”, the craft operating conditions, microphone positioning, test procedure, engine speeds for each of the Duty Cycle modes and the formula and table for calculating the Duty Cycle operator ear sound pressure level. This document is subject to change to keep pace with technical advances as well as other international standards and practices. Changes in this Revision: The sound pressure level measurements performed while applying this document are based on the Five-Mode Marine Engine Duty Cycle instead of a single engine speed.
2016-11-14
WIP Standard
ARP5305A
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
CURRENT
2016-10-27
Standard
MAP4053A
Applications include specifications, reports, ratings, texts etc., where fluid leakage rates are treated.
CURRENT
2016-10-21
Standard
AIR4827B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
2016-10-05
WIP Standard
ARP4163A
This document establishes general design criteria, tolerances, and limits of application for tooling, fixtures and accessories for mounting and driving gas turbine engine rotors on horizontal and vertical balancing machines. For your own safety, while using balancing tooling, regard the safety instructions of the individual supplier.
CURRENT
2016-09-14
Standard
ARP4755C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
2016-08-31
WIP Standard
ARP5758A
This document describes a recommended practice and procedure for the trending of parameters to maintain the test cell correlation status. Trending is performed to monitor test cells for changes that can affect engine performance or the data acquired from engine tests.
CURRENT
2016-08-12
Standard
ARP741C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
CURRENT
2016-08-03
Standard
J2517_201608
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/ (volt/volt) or mm/ (mvolt/volt)).
CURRENT
2016-08-02
Standard
J2413_201608
This Recommended Practice is for use by contractual parties to verify new xenon arc test apparatus ability to perform SAE J1885, J1960, J2412, J2527, or other as specified.
CURRENT
2016-08-01
Standard
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
CURRENT
2016-07-27
Standard
J1802/1_201607
This SAE Recommended Practice contains the reference information for SAE J1802.
CURRENT
2016-07-26
Standard
AIR1794B
This metric SAE Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems.
CURRENT
2016-06-17
Standard
J3095_201606
This recommended practice provides a procedure for measuring quantitatively the physical characteristics of linear impactors that are believed to effect impact test accuracy, repeatability, and reproducibility. Suggested values and tolerance are also provided for specific applications of linear impactor testing (i.e. Ejection Mitigation tests, Head form Impact tests, Body Block tests). Two functional groups of linear impactors are considered, those whose function is related primarily to displacement and those related to measuring acceleration or force.
CURRENT
2016-06-09
Standard
ARP598D
This SAE Aerospace Recommended Practice (ARP) defines the materials, apparatus and procedure for sizing and counting of particulate contamination, 5 μm or greater, in hydraulic fluid samples by membrane filtration iwth microscopic counting. It is capable of counting particulate matter in samples withdrawn from fluid power systems as identified by the 12 classes of SAE AS 4059 or NAS 1638 and projected beyond these for the five standard ranges specified and can thus serve as the primary document to determine acceptability. It is also capable of revealing but not measuring evidence of abnormal amount of water, other fluids, fine particulate and other materials, especially fibers and metals. It is applicable to all military, civil, space vehicles and test equipment.
Viewing 1 to 30 of 127

Filter

  • Standard
    127