Display:

Results

Viewing 1 to 30 of 948
2016-07-01
Book
Eric Walter, Richard Walter
Modern vehicles have electronic control units (ECUs) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs (or simply ‘controllers’) are networked together to share information, and output directly measured and calculated data to each other. This in-vehicle network is a data goldmine for improved maintenance, measuring vehicle performance and its subsystems, fleet management, warranty and legal issues, reliability, durability, and accident reconstruction. The focus of Data Acquisition from HD Vehicles Using J1939 CAN Bus is to guide the reader on how to acquire and correctly interpret data from the in-vehicle network of heavy-duty (HD) vehicles. The reader will learn how to convert messages to scaled engineering parameters, and how to determine the available parameters on HD vehicles, along with their accuracy and update rate. Written by two specialists in this field, Richard (Rick) P. Walter and Eric P.
2016-06-28
Standard
EIA511
The Manufacturing Message Specification is an application layer standard designed to support messaging communications to and from programmable devices in a Computer Integrated Manufacturing (CIM) environment. This environment is referred to in this standard as the manufacturing environment. This standard does not specify a complete set of services for remote programming of devices, although provision or such a set of services may be subject of future standardization efforts.
2016-06-02
WIP Standard
J2836/5
This SAE Information Report J2836/5™ establishes the use cases for communications between Plug-In Electric Vehicles (PEV) and their customers. The use case scenarios define the information to be communicated related to customer convenience features for charge on/off control, charge power curtailment, customer preference settings, charging status, EVSE availability/access, and electricity usage. Also addresses customer information resulting from conflicts to customer charging preferences. This document only provides the use cases that define the communications requirements to enable customers to interact with the PEV and to optimize their experience with driving a Plug-In Electric Vehicle. Specifications such as protocols and physical transfer methods for communicating information are not within the scope of this document.
2016-05-31
Standard
EIA484A
The increasing use of computers and related equipment in Direct Numericai Control (DNCI) Systems for storage and distribution of machine programs to numerically controlled machines and for communication between various components of DNC systems has demonstrated the need for a standard data communication link between the DNC and the numerical control unit. As a result, the EIA Committee IE-31 which is made up of representatives of numerical control system builders, machine builders and users has prepared this standard for use by people specifying, building and using DNC systems.
2016-05-05
WIP Standard
AS6523
This data dictionary provides a mathematically coherent set of definitions for quantity types used in data models for unmanned systems. In this data dictionary, a quantity is defined as a property of a phenomenon, substance, or body whose value has magnitude.
2016-05-03
WIP Standard
J1939/71
The SAE J1939 communications network is developed for use in heavy-duty environments and suitable for horizontally integrated vehicle industries. The SAE J1939 communications network is applicable for light-duty, medium-duty, and heavy- duty vehicles used on-road or off-road, and for appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on-highway and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements.   SAE J1939-71 Vehicle Application Layer is the SAE J1939 reference document for the conventions and notations that specify parameter placement in PGN data fields, the conventions for ASCII parameters, and conventions for PGN transmission rates.
2016-04-26
WIP Standard
AS6386
This document, the JAUS Automated Behaviors and Diagnostics Service Set, defines a message-passing interface for services commonly found in mobile unmanned systems. These services represent the platform-independent capabilities common across all domains. Additional capabilities are specified in the JAUS Core Service Set (AS5710) and are frequently referenced herein.
2016-04-12
WIP Standard
AS5506C
(1) This standard defines a language for describing both the software architecture and the execution platform architectures of performance-critical, embedded, real-time systems; the language is known as the SAE Architecture Analysis & Design Language (AADL). An AADL model describes a system as a hierarchy of components with their interfaces and their interconnections. Properties are associated to these constructions. AADL components fall into two major categories: those that represent the physical hardware and those representing the application software. The former is typified by processors, buses, memory, and devices, the latter by application software functions, data, threads, and processes. The model describes how these components interact and are integrated to form complete systems. It describes both functional interfaces and aspects critical for performance of individual components and assemblies of components.
2016-04-05
WIP Standard
J2945/11
This effort will be a recommend best practices document outlining how to use the J2735 Signal Request and Signal Status messages in the standard relating to signalized systems status. It primary content will deal with explaining and demonstrating by small working examples how these messages are constructed and used to meet operational needs of user. Particular attention will be paid to the interaction between the SAE work and the relevant NTCIP standards used in the signal control system. [The SAE J2735 document, being a data dictionary and not a guide, allowed only a brief summary of this sort of material.] The intended audience for this effort are those developing new deployment using these messages in connection with intersection safety applications. This will be a recommend practice, not a standard.
2016-04-05
WIP Standard
J2945/10
This effort will be a recommend best practices document outlining how to use the current MAP and SPAT message content found in the recently published J2735. It’s primary content will deal with better explaining and demonstrating by small working examples of how suitable messages are constructed and used to meet operational needs of user. [The SAE J2735 document, being a data dictionary and not a guide, allowed only a briefs summary of this sort of material.] The intended audience for this effort are those developing new deployment using these messages in connection with intersection safety applications. This will be a recommend practice, not a standard.
2016-04-05
Journal Article
2016-01-0057
Eiji Taki, Yoshiro Hirata, Yoshifumi Ohmori, Naoji Kaneko, Hiroya Andou
Abstract The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
2016-04-05
Technical Paper
2016-01-0066
Joe Hupcey, Bryan Ramirez
Abstract The number one priority in vehicle security is to harden the root-of-trust; from which everything else - the hardware, firmware, OS, and application layer’s security - is derived. If the root-of-trust can be compromised, then the whole system is vulnerable. In the near future the root-of-trust will effectively be an encryption key - a digital signature for each vehicle - that will be stored in a secure memory element inside all vehicles. In this paper we will show how a mathematical, formal analysis technique can be applied to ensure that this secure storage cannot (A) be read by an unauthorized party or accidentally “leak” to the outputs or (B) be altered, overwritten, or erased by unauthorized entities. We will include a real-world case study from a consumer electronics maker that has successfully used this technology to secure their products from attacks 24/7/365.
2016-04-05
Technical Paper
2016-01-0063
Karsten Schmidt, Harald Zweck, Udo Dannebaum
Abstract/Short Version Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc.Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices.
2016-04-05
Technical Paper
2016-01-0062
Anders Kallerdahl, Sherif Ali
Abstract Communication between electronic control units (ECUs) and vehicle gateways can span LIN, CAN, FlexRay, and Ethernet. Designing an in-vehicle network supporting multiple car platform variants, with respect to selecting the appropriate technology to connect ECUs and gateway networks, and making timing based analysis and synthesis is extremely challenging. This paper discusses how to handle a variety of communication protocols on an individual network level and how multiple networks relate to the overall communication design of a vehicle platform ensuring consistent variants.
2016-04-05
Technical Paper
2016-01-0061
Anders Kallerdahl, Mohammad Salah
Abstract Increasingly, Ethernet is being used in automotive as a vehicle network backbone. It is ideal for service-oriented communications; streamed communications, such as Audio/Video Bridging (AVB) [1]; and Diagnostics over Internet Protocol (DoIP) [2] communications - areas in which high-bandwidth and reliable performance are essential. Designers are accustomed to network communication systems CAN, LIN, and FlexRay, but how will the timing performance be verified in an Ethernet network? This paper looks at network-wide timing analysis challenges where a mixture of CAN, FlexRay, and Ethernetbased busses co-exist. It is also worth noting that the AUTOSAR standard [3] supports timing definition for all elements in a mixed topology network, but again, accounting for the many different timing paths is a non-trivial process. Figure 1 The Ethernet backbone serving different domains.
2016-04-05
Technical Paper
2016-01-0067
Ryan Wilson, Wayne Music, Brian Anderson
Modern vehicular systems rely on millions of lines of code that must occasionally be updated to add new functions or to patch flaws to ensure safe and secure operation. Updates accomplished through a compromised cellular base station could lead to an update process that may be vulnerable to attack. We have been investigating techniques for determining whether an LTE base station (known as an eNodeB) appears to be suspicious, so that an update could be paused or terminated until a trusted eNodeB is available. We describe a detector we developed as part of our research that scans LTE signals for anomalies and provides an alert when an anomaly is found.
2016-04-05
Journal Article
2016-01-0081
Husein Dakroub, Adnan Shaout, Arafat Awajan
Abstract Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
2016-04-05
Journal Article
2016-01-0078
Eric DiBiaso, Bert Bergner, Jens Wuelfing, Robert Wuerker, Carlos Almeida
Abstract Ethernet technology using a single unshielded twisted pair (UTP) is considered to have a promising future in the automotive industry. While 100Mbps transmission speeds can be achieved with standard connector platforms, 1Gbps requires specific design rules in order to ensure error free transmissions. This paper explains the specific challenges for high speed UTP solutions applied in automotive environments. Automotive relevant signal integrity (SI) and electromagnetic compatibility (EMC) connector limitations are also discussed in detail. Through simulations and testing, the connector design criteria and rules necessary for meeting all the electrical and mechanical requirements for such automotive applications are evaluated and shown. This is followed by the introduction of a modular and scalable MATEnet Ethernet connection system utilizing an optimized cable termination technology.
2016-04-05
Technical Paper
2016-01-0095
Qiao Fengying, Vincenzo Sacco, Gilles Delorme, Yevheniy Soloshenko
Abstract In this work, we analyze the use of the Local Interconnect Network (LIN) bus (and some of its potential variants) as Safety Element out of Context (SEooC) from an ISO-26262 perspective and provide the reader with an analysis methodology to compare between a range of different LIN protocol configurations and benchmark them against Automotive Safety Integrity Level (ASIL) targets as defined in ISO-26262. A methodology for a quantitative residual failure probability analysis is shown before applying it to the standard LIN protocol. The residual failure rate in time (RF) of LIN (compliant with ISO26262) has been investigated with a range of reasonable application assumptions. This paper shows that a high bit error probability assumption of 3e-5 yields an RF of 3e-4/h which is too high to satisfy the assumed ASIL-B target (1e-7/h) or higher functional safety requirements in noisy application.
2016-04-05
Journal Article
2016-01-0149
Mehdi Jalalmaab, Mohammad Pirani, Baris Fidan, Soo Jeon
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
2016-04-05
Technical Paper
2016-01-0140
Yang Zheng, Navid Shokouhi, Nicolai Thomsen, Amardeep Sathyanarayana, John Hansen
Abstract The use of smart portable devices in vehicles creates the possibility to record useful data and helps develop a better understanding of driving behavior. In the past few years the UTDrive mobile App (a.k.a MobileUTDrive) has been developed with the goal of improving driver/passenger safety, while simultaneously maintaining the ability to establish monitoring techniques that can be used on mobile devices on various vehicles. In this study, we extend the ability of MobileUTDrive to understand the impact on driver performance on public roads in the presence of distraction from speech/voice based tasks versus tactile/hands-on tasks. Drivers are asked to interact with the device in both voice-based and hands-on modalities and their reaction time and comfort level are logged. To evaluate the driving patterns while handling the device by speech/hand, the signals from device inertial sensors are retrieved and used to construct Gaussian Mixture Models (GMM).
2016-04-05
Technical Paper
2016-01-0150
Felix Pistorius, Andreas Lauber, Johannes Pfau, Alexander Klimm, Juergen Becker
Abstract Various algorithms such as emergency brake or crash warning using V2X communication have been published recently. For such systems hard real-time constraints have to be satisfied. Therefore latency needs to be minimized to keep the message processing delay below a certain threshold. Existing V2X systems based on the IEEE 1609 and SAE J2735 standards implement most message processing in software. This means the latency of these systems strongly depends on the CPU load as well as the number of incoming messages per time. According to safety constraints all messages of nearby vehicles have to be processed, whereby no prediction of the message importance can be given without analyzing the message content. Regarding the aforementioned requirements we propose a novel architecture that optimizes latency to satisfy the hard real-time constraints for V2X messages.
2016-04-05
Technical Paper
2016-01-1461
William T. Neale, David Danaher, Sean McDonough, Tomas Owens
Abstract There are numerous publically available smart phone applications designed to track the speed and position of the user. By accessing the phones built in GPS receivers, these applications record the position over time of the phone and report the record on the phone itself, and typically on the application’s website. These applications range in cost from free to a few dollars, with some, that advertise greater functionality, costing significantly higher. This paper examines the reliability of the data reported through these applications, and the potential for these applications to be useful in certain conditions where monitoring and recording vehicle or pedestrian movement is needed. To analyze the reliability of the applications, three of the more popular and widely used tracking programs were downloaded to three different smart phones to represent a good spectrum of operating platforms.
2016-04-05
Technical Paper
2016-01-1425
Thomas McWilliams, Daniel Brown, Bryan Reimer, Bruce Mehler, Jonathan Dobres
Abstract Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
2016-04-05
Technical Paper
2016-01-1422
Tarek Ouali, Nirav Shah, Bill Kim, David Fuente, Bo Gao
Abstract This paper introduces a new method for driving style identification based on vehicle communication signals. The purpose of this method is to classify a trip, driven in a vehicle, into three driving style categories: calm, normal or aggressive. The trip is classified based on the vehicle class, the type of road it was driven on (urban, rural or motorway) and different types of driving events (launch, accelerating and braking). A representative set of parameters, selected to take into consideration every part of the driver-vehicle interaction, is associated to each of these events. Due to the usage of communication signals, influence factors, other than vehicle speed and acceleration (e.g. steering angle or pedals position), can be considered to determine the level of aggressiveness on the trip. The conversion of the parameters from physical values to dimensionless score is based on conversion maps that consider the road and vehicle types.
2016-04-05
Technical Paper
2016-01-1440
Julia Seeanner, Johnell Brooks, Mary Mossey, Casey Jenkins, Paul Venhovens, Constance Truesdail
Abstract While motorcycle safety frequently focuses on topics like helmet use and engineering aspects such as anti-lock braking systems, little research has investigated aging riders’ use of technologies (i.e., phones, navigation systems, etc.) or the characteristics of older riders (defined as above the age of 40) who use them. This study surveyed a convenience sample of typical motorcycle riders in the United States in order to provide an overview of the types of technologies that riders of different age groups use while riding, problems or concerns about those technologies, as well as rider demographics and riding habits. The sample included 97 riders (84 males and 13 females) between the ages of 20 and 71 years (M= 50.9, SD= 10.6) who were divided into three age groups (under 40 years, between 40 and 50 years, 50 years and older).
2016-04-05
Technical Paper
2016-01-1426
Lex Fridman, Joonbum Lee, Bryan Reimer, Bruce Mehler
Abstract The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
2016-04-05
Technical Paper
2016-01-1428
Bruce Mehler, Bryan Reimer, Jonathan Dobres, James Foley, Kazutoshi Ebe
Abstract This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
2016-04-05
Technical Paper
2016-01-0500
Akira Kato, Masayuki Takano, Kohei Hase, Satoko Inuzuka, Toshiyuki Dobashi, Tsuyoshi Sugimoto, Nobuaki Takazawa
Abstract In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
2016-04-04
Standard
AS5643B
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation.
Viewing 1 to 30 of 948

Filter