Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 105
2016-10-10
WIP Standard
J238
This SAE Standard covers general, dimensional data, and methods of test for two types of general purpose nut and conical spring washer assemblies, designated Type LN and Type HN, intended for mass production and other operations where speed and convenience are paramount factors.
CURRENT
2016-08-11
Standard
AS24586B
CURRENT
2016-08-02
Standard
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
CURRENT
2016-08-02
Standard
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
CURRENT
2016-07-18
Standard
AS24585C
CURRENT
2016-05-06
Standard
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
CURRENT
2016-05-02
Standard
AMS5110K
This specification covers a carbon steel in the form of wire supplied as coils of wire or as finished springs.
CURRENT
2016-04-05
Standard
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
CURRENT
2016-04-05
Standard
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
CURRENT
2016-04-05
Standard
J217_201604
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
CURRENT
2016-04-05
Standard
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
CURRENT
2016-04-05
Standard
J230_201604
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
CURRENT
2016-04-01
Standard
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
CURRENT
2016-04-01
Standard
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
2015-12-31
WIP Standard
J670
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
CURRENT
2015-12-20
Standard
AMS7304F
This specification covers coiled springs fabricated from carbon-steel wire.
CURRENT
2013-04-15
Standard
J238_201304
This SAE Standard covers general, dimensional data, and methods of test for two types of general purpose nut and conical spring washer assemblies, designated Type LN and Type HN, intended for mass production and other operations where speed and convenience are paramount factors.
CURRENT
2012-10-05
Standard
J1574/2_201210
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
CURRENT
2012-10-05
Standard
J1574/1_201210
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
CURRENT
2012-10-03
Standard
AS6053A
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
CURRENT
2012-05-11
Standard
J551/16_201205
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
CURRENT
2011-08-25
Standard
AMS3568B
This specification and its supplementary detail specifications cover a chemically or mechanically expanded polyether urethane (EU) elastomeric foam material in the form of ready-to-use sheet.
CURRENT
2011-08-25
Standard
AMS3568/3B
This specification covers a chemically or mechanically expanded polyether urethane (EU) elastomeric foam material in the form of ready-to-use sheet.
CURRENT
2011-08-25
Standard
AMS3568/2B
This specification covers a chemically or mechanically expanded polyether urethane (EU) elastomeric foam material in the form of ready-to-use sheet.
CURRENT
2011-08-25
Standard
AMS3568/1B
This specification covers a chemically or mechanically expanded polyether urethane (EU) elastomeric foam material in the form of ready-to-use sheet.
CURRENT
2008-06-30
Standard
J2003_200806
This SAE Standard is equivalent to ISO Standard 6626. Differences, where they exist, are shown in the appendix with associated rationale. This document specifies the essential dimensions of piston ring types DSF-C, DSF-CNP, SSF, GSF, DSF, DSF-NG, and SSF-L coil spring loaded oil control rings. For the cast iron part the recommended material is class 10 according to SAE J1590. For special applications material classes 20 to 50 may be used. Variation in face design and spring groove from these may be used, as recommended by individual manufacturers, in plain or chromed versions. The tangential forces of coil spring loaded oil control rings can be varied over a wide range. Explanations and recommendations are given in Section 6. The normal range for axial width of coil spring loaded oil control rings (3 to 8 mm inclusive) is divided into 0.5 or 1.0 mm steps.
CURRENT
2008-01-24
Standard
J670_200801
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
HISTORICAL
2007-06-15
Standard
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
HISTORICAL
2006-09-12
Standard
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
HISTORICAL
2005-09-19
Standard
J551/16_200509
1. Scope 1.1 Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Viewing 1 to 30 of 105