Criteria

Text:
Display:

Results

Viewing 1 to 30 of 174
2017-11-20
Technical Paper
2017-01-5021
Greg Suter, Lodewijk Wijffels, Oliver Nehls
This paper will detail the development of a Handling Controller designed to assist the driver in recovering from oversteer situations using an Active Front Steering (AFS) system. The AFS system uses an electric motor to provide a steering angle overlay to the driver’s steering input. This angle can be used to supplement countersteer during an oversteer event, and to rapidly remove countersteer when the sideslip is collapsing, preventing a fishtailing situation. Key factors considered in designing the system were functional safety considerations for potential sensor failures, and how to assist the driver without creating an unnatural feel or excessive torque feedback in the steering wheel. This system may be used to supplement brake stability controls, increasing stability levels with less harshness. The lessons learned from this application may also be used in designing autonomous steering systems to recover from oversteer situations.
2017-09-23
Technical Paper
2017-01-1996
Zhichao Lin, Xuexun Guo, Xiaofei Pei, Bo Yang, Yanggang Zhang
Abstract Dynamic modeling and state estimation are significant in the trajectory tracking and stability control of the intelligent vehicle. In order to meet the requirement of the stability control of the eight-in-wheel-motor-driven intelligent vehicle, a full vehicle dynamics model with 12 degrees of freedom, including the longitudinal, lateral, yaw and roll motion of the body, and rotational motion of 8 wheels, is established for the research of the intelligent vehicle in this paper. By simulation with MATLAB/SIMULINK and by comparison with the TruckSim software, the reliability and practicality of the dynamics model are verified. Based on the established dynamics model, an extended Kalman filter (EKF) state observer is proposed to estimate the vehicle sideslip angle, roll angle and yaw rate, which are the key parameters to the stability control of the intelligent vehicle.
2017-09-23
Technical Paper
2017-01-1993
Daoyuan Sun, Xiaofei Pei, Xu Hu, Hao Pan, Bo Yang
Abstract This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
2017-09-23
Technical Paper
2017-01-2001
Xin Li, Lixin Situ, Yongqiang Yu, Feng Chen
Abstract Research and development of autonomous functions for a road vehicle become increasingly active in recent years. However, the vehicle driving dynamics performance and safety are the big challenge for the development of autonomous vehicles especially in severe environments. The optimum driving dynamics can only be achieved when the traction torque on all wheels can be influenced and controlled precisely. In this study, we present a novel approach to this problem by designing an advanced torque vectoring controller for an autonomous vehicle with four direct-drive in-wheel motors to generate and control the traction torque and speed quickly and precisely, thus to improve the stability and safety of the autonomous vehicle. A four in-wheel motored autonomous vehicle equipped with Radar and camera is modelled in PanoSim software environment. Vehicle-to-Vehicle (V2V) communication is used in this software platform to avoid collision.
2017-09-17
Journal Article
2017-01-2498
David B. Antanaitis, E Lloyd
Abstract This paper describes the development work that went into the creation of the SAE J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications. The SAE J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command). Data generated by this procedure may be used as a direct assessment of the flow performance of a brake hydraulic component, or they may be used to build subsystem or system-level models.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-05-30
Technical Paper
2017-01-5002
James Bradley Skarie
Abstract Antilock braking systems (ABS) are inherently limited by the static coefficient of friction (µ) between a vehicle’s tires and the road surface. This paper explores a unique active safety concept, Integrated Coefficient Enhancement (ICE), which works to improve ABS well beyond their present limits. The ICE concept was developed using a basic physics principle: to change µ between two surfaces, at least one of the surfaces must be altered in some way. By quickly deploying a specially designed tractive medium (TM) to aid in directional stability and braking, hazardous situations can be greatly mitigated. This paper describes the features and testing results of this TM and its aerodynamic-mechanical-electronic deployment apparatus. Under all slippery road conditions tested, the developed TM mitigated skidding, with improvements that ranged from 20% to several hundred percent, depending on conditions and deployment rates.
2017-03-28
Technical Paper
2017-01-1371
Hao Pan, Xuexun Guo, Xiaofei Pei, Xingzhi Dong
Abstract Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Technical Paper
2017-01-1580
Smitha Vempaty, Yuping He
Abstract Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
2017-03-28
Technical Paper
2017-01-1590
Jyotishman Ghosh, Stéphane Foulard, Rafael Fietzek
Abstract A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
2017-03-28
Technical Paper
2017-01-1560
Wei Liu, Lu Xiong, Bo Leng, Haolan Meng, Renxie Zhang
Abstract In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
2017-03-28
Technical Paper
2017-01-1575
Andrei Keller, Sergei Aliukov, Vladislav Anchukov
Abstract Trucks are one of the most common modes of transport and they are operated in various road conditions. As a rule, all-wheel drive trucks are equipped with special systems and mechanisms to improve their off-road capability and overall efficiency. The usage of blocked mechanisms for power distribution is one of the most popular and effective ways to improve the off-road vehicle performance. However, the lock of differential may adversely affect the stability and control of vehicle because of the unobvious redistribution of reactions acting on wheels, which consequently leads to poor performance and safety properties. Problems of rational distribution of power in transmissions of all-wheel drive vehicles, as well as research in the field of improving directional stability and active safety systems are among the priorities in modern automotive industry.
2017-03-28
Technical Paper
2017-01-1581
Jianbo Lu, Hassen Hammoud, Todd Clark, Otto Hofmann, Mohsen Lakehal-ayat, Shweta Farmer, Jason Shomsky, Roland Schaefer
Abstract This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
2017-03-28
Technical Paper
2017-01-1565
Xiangkun He, Kaiming Yang, Xuewu Ji, Yahui Liu, Weiwen Deng
Abstract A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
2017-03-28
Journal Article
2017-01-0419
Yuliang Yang, Yu Yang, Ying Sun, Jian Zeng, Yunquan Zhang
Abstract In addition to ride comfort, handling stability and other conventional vehicle performances, we should also focus on other aspects of performance to a center axle trailer combination, such as the maximum stable side-inclination, the anti-rolling stability, the lateral stability and so on. Based on the finite element method, a rigid-flexible coupling model for the truck combination was built and analyzed in the multi-body environment (ADAMS), in which the key components of the chassis and cab suspension were treated as flexible bodies. A series of simulations were carried out to evaluate the lateral stability of the center axle trailer in accordance with the relevant regulations of the vehicle. The influence of design variables on the lateral stability was studied by an experiment. Furthermore, in order to improve the lateral stability of the trailer combination, the optimal design was obtained by the co-simulation of the ADAMS/Car, iSIGHT and Matlab.
2017-03-28
Journal Article
2017-01-0437
Bin Li, Subhash Rakheja
Abstract In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
2017-03-28
Journal Article
2017-01-1554
Ajith Jogi, Sujatha Chandramohan
Abstract Over the years, commercial vehicles, especially tractor-semitrailer combinations have become larger and longer. With the increasing demand for their accessibility in remote locations, these vehicles face the problem of off-tracking, which is the ensuing difference in path radii between the front and rear axles of a vehicle as it maneuvers a turn. Apart from steering the rear axle of the semitrailer, one of the feasible ways of mitigating off-tracking is to shift the fifth wheel coupling rearwards. However, this is limited by the distribution of the semitrailer’s load between the two axles of the tractor; any rearward shift of the fifth wheel coupling results in the reduction of the total static load on the tractor’s front axle and hence available traction. This may in turn lead to directional instability of the vehicle. In the present work, a new model of the fifth wheel coupling is proposed which the authors call Split fifth wheel coupling (SFWC).
2017-03-28
Journal Article
2017-01-1506
Johannes Wiessalla, Yiqin Mao, Frank Esser
Abstract An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
2017-03-28
Journal Article
2017-01-1563
Abhijeet Behera, Murugan Sivalingam
Abstract Two and three wheeler vehicles are largely used in many developing and under developing countries because of their lower cost, better fuel economy and easy handling. Although, the construction of them is simpler than the four wheeler vehicle, they pose some problems related to instability. Wobbling is the main cause of instabilities in two wheeler and three wheeler vehicles. In this study, a mathematical model was proposed and developed to determine wobble instability of a two wheeler. Nonlinear equations were formulated by using kinematics and the D’Alembert’s principle with the help of multi body formalism. The non-linear equations found in the study were linearized with respect to rectilinear and upright motion, considering no rolling. It led to formation of matrix. The real part of the Eigen value of the matrix was found to be negative, implication of whose was an asymptotic stable motion.
2017-03-28
Journal Article
2017-01-1569
Amro Elhefnawy, Alhossein sharaf, Hossam Ragheb, Shawky Hegazy
Abstract This paper presents an advanced control system, which integrates three fuzzy logic controllers namely; Direct Yaw-moment Control (DYC), Active Roll-moment Control (ARC) and Active Front Steering (AFS) to enhance vehicle cornering and overturning stability. Based on a well-developed and validated fourteen degree of freedom (DOF) full vehicle model with non-linear tire characteristics, a reference 3-DOF yaw-roll plane vehicle model is introduced to control yaw rate, sideslip angle, and roll angle of the vehicle body. The control actions of both direct yaw and active roll moments are performed by generating differential braking moments across the front wheels, while the control action of the active steering is performed by modifying the steering wheel angle. Different standard cornering tests are conducted in MATLAB / Simulink environment such as J-turn, fishhook and lane change maneuvers.
2017-03-28
Technical Paper
2017-01-1556
Jianbo Lu, Li Xu, Daniel Eisele, Stephen Samuel, Matthew Rupp, Levasseur Tellis
Abstract This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
2016-09-27
Journal Article
2016-01-8106
Sameer Kolte, Ananth Kumar Srinivasan, Akilla Srikrishna
Abstract As we move towards the world of autonomous vehicles it becomes increasingly important to integrate several chassis control systems to provide the desired vehicle stability without mutual interference. The principles for integration proposed in existing technical literature are majorly centralized which are not only computationally expensive but does not fit the current supplier based OEM business model. An Automotive OEM brings multiple suppliers on-board for developing the Active Safety systems considering several factors such as cost, quality, time, ease of business etc. When these systems are put together in the vehicle they may interfere with each other’s function. Decoupling their function results in a need of heavy calibration causing performance trade-offs and loss in development time.
2016-09-14
Technical Paper
2016-01-1902
Xiaoyu Wang, Yun Zhao, Yufeng Lian, Yantao Tian
Abstract A new lateral stability control method, which is based on vehicle sideslip angle and tire cornering stiffness estimation, is proposed to improve the lateral stability of the four-in-wheel-motor-driven electric vehicle (FIWMD-EV) in this paper. Through the lateral tire force information, vehicle sideslip angle can be estimated by the extended kalman filter (EKF). Using the estimated vehicle sideslip angle, tire cornering stiffness can be also estimated by forgetting factor recursive least squares (FFRLS). Furthermore, combining with the vehicle dynamics model, an adaptive control target model is proposed with the information on vehicle sideslip angle and tire cornering stiffness. The new lateral stability control system uses the direct yaw moment control (DYC) based on dynamic sliding mode is proposed. The performance and effectiveness of the proposed vehicle state estimation and lateral stability control system are verified by CarSim and Simulink cosimulation.
2016-04-05
Journal Article
2016-01-1670
Qian Wang, Beshah Ayalew, Amandeep Singh
Abstract This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
2016-04-05
Technical Paper
2016-01-1671
Dejian Han, Zhen Yan, Feng Xiao, Shaokun Li
Abstract Direct yaw moment control can maintain the vehicle stability in critical situation. For four-wheel independently driven (4WD) electric vehicle with in-wheel motors (IWMs), direct yaw moment control (DYC) can be easily achieved. A fairly accurate calculation of the required yaw moment can improve vehicle stability. A novel sliding mode control (SMC) technique is employed for the motion control so as to track the desired vehicle motion, which is it for different working circumstances compared to the well-used traditional DYC. Through the weighted least square algorithm, the lower controller is used to determine the torque properly allocated to each wheel according to the desired yaw moment. Several actuator constraints are considered in the control strategy. In addition, a nonlinear tire model is utilized to improve the accuracy of tire lateral force estimation. Then, simulations are carried out and the values of vehicle states are compared.
2016-04-05
Technical Paper
2016-01-1667
Long Chen, Shuwei Zhang, Mingyuan Bian, Yugong Luo, Keqiang Li
Abstract As a typical parameter of the road-vehicle interface, the road friction potential acts an important factor that governs the vehicle motion states under certain maneuvering input, which makes the prior knowledge of maximum road friction capacity crucial to the vehicle stability control systems. Since the direct measure of the road friction potential is expensive for vehicle active safety system, the evaluation of this variable by cost effective method is becoming a hot issue all these years. A ‘wheel slip based’ maximum road friction coefficient estimation method based on a modified Dugoff tire model for distributed drive electric vehicles is proposed in this paper. It aims to evaluate the road friction potential with vehicle and wheel dynamics analyzing by using standard sensors equipped on production vehicle, and fully take the advantage of distributed EV that the wheel drive torque and rolling speed can be obtained accurately.
2016-04-05
Journal Article
2016-01-0444
Kemal Çalışkan, Mina M.S. Kaldas, Roman Henze, Ferit Küçükay
Abstract This paper presents a performance analysis study for the Rule-Optimized controller of a semi-active suspension system. The Rule-Optimized controller is based on a Fuzzy Logic control scheme which offers new opportunities in the improvement of vehicle ride performance. An eleven degree of freedom full vehicle ride dynamics model is developed and validated through laboratory tests performed on a hydraulic four-poster shaker. An optimization process is applied to obtain the optimum Fuzzy Logic membership functions and the optimum rule-base of the semi-active suspension controller. The global optima of the cost function which considers the ride comfort and road holding performance of the full vehicle is determined through discrete optimization with Genetic Algorithm (GA).
2016-04-05
Technical Paper
2016-01-0447
Manfred Baecker, Axel Gallrein, Francesco Calabrese, Remco Mansvelders
Abstract Sudden pressure loss can lead to vehicle instability and - without aid of systems such as e.g. Electronic Stability Control (ESC) - to an emergency situation, possibly resulting in an accident. But also with an ESC system such a situation is an unusual (unstandardized) application case, because the vehicle system (car+tires) properties change very rapidly during the sudden pressure loss, which leads to a very high dynamic response in the system and moreover to a very fuzzy and unclear description of the vehicle system. From this point of view, a proper validation and verification of an ESC system for such an application seems to have a high safety relevancy. The authors have set up a simulation case to simulate a sudden tire inflation pressure loss and its consequences to the car stability. Using this simulation setup enables a CAE engineer to pre-develop ESC systems and/or to validate and test these for a realistic and relevant use case.
2016-04-05
Technical Paper
2016-01-0455
Hongyu Zheng, Jinghuan Hu, Shuo Yang
Abstract Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
Viewing 1 to 30 of 174

Filter