Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 183
2017-03-28
Journal Article
2017-01-0403
Guangqiang Wu, Huwei Wu
Abstract Experimental schemes, frequency characteristics, subjective and objective sound quality evaluation and sound quality prediction model establishment of a certain mass-production SUV (Sport Utility Vehicle, SUV) manual transmission gear rattle phenomenon were analyzed in this paper. Firstly, vehicle experiments, including experiment conditions, vibration acceleration sensor and microphone arrangements and especial considerations in experiments, were described in detail. Secondly, through time-frequency analysis, broadband characteristics of manual transmission gear rattle noise were identified and vibro-impact of gear rattle occurs in the frequency range of 450~4000Hz on the vehicle idle condition and the creeping condition. Thirdly, based on bandwidth filtering processing of gear rattle noise, subjective assessment experiments by a paired comparison method were carried out.
2016-06-15
Technical Paper
2016-01-1781
Matthew Maunder, Phil Grant, Duncan Mawdsley
Abstract Engine sound quality is a key attribute for sporty cars - it powerfully conveys the brand image to the driver/passengers and onlookers, and provides driver involvement by giving instant feedback about how a car is operating. Providing this has become more difficult with tighter pass-by noise regulations and the near-universal adoption of turbocharging. In the last two decades, sporty sound inside the cabin has been regained using intake sound generator systems that transfer sound more directly to the vehicle interior. The high cost of these systems is more recently driving a move towards electronic Active Sound Design with systems delivering synthetic sound through loudspeakers. However, the purist sports car market perceives this approach to be fake or artificial. An alternative approach is provided by a system for Realistic Augmented Sound by Ricardo (RAS-R) that offers a choice of two realistic engine sound sources.
2016-06-15
Technical Paper
2016-01-1770
Insoo Jung, Jaemin Jin, Dongchul Lee, Seunghyun Lee, Seungwook Yang, Kyoungdoug Min
Abstract This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine.
2016-06-15
Technical Paper
2016-01-1843
Jan Krueger, Viktor Koch, Ralf Hoelsch
Abstract Over the past few years, the measurement procedure for the pass-by noise emission of vehicles was changed and new limit values have been set by the European Parliament which will come into force within the next few years. Moreover, also the limits for chemical emissions such as NOx, particulates and CO2 have been lowered dramatically and will continue to be lowered according to a roadmap decided not only in Europe but also in other markets throughout the world. This will have an enormous impact on the design of future passenger cars and in particular on their powertrains. Downsizing, downspeeding, forced induction, and hybridization are among the most common general technology trends to keep up with these challenges. However, most of these fuel saving and cleaner technologies also have negative acoustic side effects.
2016-06-15
Technical Paper
2016-01-1812
Saad Bennouna, Solène Moreau, Jean Michel Ville, Olivier Cheriaux
Abstract The noise radiated inside the car cabin depends on many sources such as the embedded equipments like the Heating, Ventilation and Air Conditioning (HVAC) module. An HVAC is a compact and complex system composed of several elements: blower, flaps, thermal exchangers, ducts… Air provided by an HVAC is blown by a blower passing through different components and then distributed to car cabin areas. Interactions between airflow and the HVAC fixed components generate noises that emerge in the car cabin. CEVAS project, managed by the automotive equipment manufacturer Valeo, is aiming to develop a prediction tool which will provide HVAC noise spectrum and sound quality data. The tool is based, in particular, on aeroacoustic characterization of individual elements and associations of elements.
2016-06-15
Journal Article
2016-01-1766
Thomas Deighan, Nozomu Kato, Kiyofumi Sato
Abstract An engine configuration has a significant influence on the sound quality from the powertrain. Whilst the fundamental order content can be readily apparent from the firing order over the engine, or bank of a V engine, some characteristics and how the engine design can influence them requires some more specific investigation. Understanding, on a fundamental level, the aspects of the engine design which influence these characteristics is critical to allow more detailed analysis and development work to be focused appropriately. The configuration of a Boxer engine gives a distinctive sound characteristic producing a unique sound compared to an In-Line configuration. Depending on the application it may be desirable to enhance or subdue some of these characteristics.
2016-06-15
Technical Paper
2016-01-1787
Thomas Deighan, Graeme Maclean, Nozomu Kato, Kiyofumi Sato
Abstract A robust analytical process for evaluating the effects of engine component design on the powertrain NVH has been developed. The work presented focuses on design modifications for refinement of the NVH levels and sound quality of a 4 cylinder Boxer engine with automatic transmission. Assessment focuses on the powertrain structure, cranktrain, torque converter and valvetrain. Comparison of predicted mount vibrations with measurements on a fired engine are made. Through detailed post-processing of the analysis results, looking at modal contributions, modal excitations and loading contributions, the causes and contributions to the NVH are understood and used to direct potential modifications to the powertrain and component design. The models are used to quantify the relative benefit of these modifications in terms of both overall vibration levels and sound quality through implementation of a rumble metric.
2016-04-05
Technical Paper
2016-01-1061
Guiping Yue, Wenbo Niu, Jian Zhao, Dandan Kong, Yun Li, Hangsheng Hou
Abstract Gear whine noise impacts customer perception of vehicle interior quietness in general and sound quality in particular. It has been a frequently occurred annoying phenomenon during vehicle development and much discussed topic regarding transmission NVH refinement in automotive industry. This work pertains to a transmission gear whine issue encountered in prototype evaluations during a vehicle program development process. The effort centers itself on the optimization of transmission gear macroscopic and microscopic parameters to fix the issue which is deemed unacceptable for customers. Specifically, by using multi-body dynamics approach, this work carries out a transmission system whine noise simulation based on optimal gear macro parameter selection and micro tooth flank modification. The obtained results show that the proposed design changes could successfully resolve the issue, which is verified by subsequent test measurement and confirmed by subjective evaluations.
2016-04-05
Technical Paper
2016-01-1313
Brian Pinkelman, Woo-Keun Song
Abstract Most methods of vibration analysis focus on measuring the level of vibration. Some methods like ISO-2631 weigh vibration level based on human sensitivity of location, direction, and frequency. Sound can be similarly measured by sound pressure level in dB. It may also be weighted to human frequency sensitivity such as dBA but sound and noise analysis has progressed to measure sound quality. The characteristic and the nature of the sound is studied; for example equal or near equal sound levels can provide different experiences to the listener. Such is the question for vibration; can vibration quality be assessed just as sound quality is assessed? Early on in our studies, vibration sensory experts found a difference in 4 seats yet no objective measurement of vibration level could reliably confirm the sensory experience. Still these particular experiences correlated to certain verbal descriptors including smoothness/roughness.
2016-04-05
Journal Article
2016-01-1120
Dong Guo, Quan Shi, Peng Yi
Abstract Gear drives are widely used in the transmission of many types of vehicles and various gear faults were reported to have different effects on the performance of transmission systems. The psychoacoustics metrics, which are used to represent the human hearing property, are objective indicators of product sound quality performance. Therefore, psychoacoustic analysis of gear noise with gear faults needs to be conducted. In this paper, different types of gear faults are summarized, and two of them, including wear and misalignment, are studied separately in the psychoacoustic analysis of the synthesized noise signal of an example gearbox. The gear noise spectra for the cases with different gear faults are synthesized based on the findings of previous publications, where it shows that the two gear faults can either increase the amplitude at the harmonics of the gear mesh frequency or cause the sideband responses.
2016-04-05
Journal Article
2016-01-0082
Satoru Komatsu, Yoshio Karasawa, Tatsuya Kashiwa, Kenji Taguchi, Suguru Imai
Abstract The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
2016-04-05
Technical Paper
2016-01-1312
Tom Wood
Abstract Light weighting vehicle acoustic components and improving the performance level of sound abatement treatments is becoming more important to automotive manufacturers due to increased fuel economy requirements established by the Corporate Average Fuel Economy - (CAFE) standards [1], and the consumer’s demand for ever improving sound quality inside the vehicle cabin. In tests conducted by Ricardo Inc. for the Aluminum Association Inc., a 2008 report estimates that for every 45 kg of mass removed from passenger vehicles and light weight commercial vehicles (LCV) up to a 1 percent increase in fuel mileage can be achieved [2]. Automotive OEM’s expect that sound abatement products, sound barriers, absorbers, and damping materials contribute to this reduction in vehicle weight.
2016-03-14
Journal Article
2016-01-9108
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
Abstract Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
2016-02-01
Technical Paper
2016-28-0039
Vijay Antony John Britto, Sudipto Karmakar, Madhan Muthuveeraswamy, Balasubramanian Natarajasundaram
NVH refinement of a vehicle with light weight structure[1] focusing on fuel efficiency is a challenging task. Resonance between the air volume of the cabin and revolving engine excitation generates booming. This booming noise affects the annoyance of sound quality in the cabin. Engine torque variation, penetration of air intake and exhaust system, and tire unbalance caused by engine auxiliary resonance are the most influential sources for high speed booming. This paper describes the booming noise level reduction between 100-200 Hz during high RPM driving conditions in one of the passenger cars. Detailed CAE iterations and testing has been done to identify the root cause of the booming noise. By considering the cost vs NVH performance trade off, the optimized NVH countermeasure has been chosen and validated. Modal analysis, operational deflection shapes, Input point inertance and Noise transfer function techniques have been used for root-cause analysis and counter measure proposal.
2015-09-29
Technical Paper
2015-01-2856
Hongbin Wang, Ojas Patil, QingHui Yuan, Aaron Hertzel Jagoda
EXTENDED ABSTRACT Fuel economy of both highway and off-highway vehicles is a major driver for new technology development. One of the technologies to meet this driver is a digital valve based hydraulic system. Digital Hydraulics technology employs high speed on/off valves to achieve the same functionality with no throttling loss. Furthermore, by forming various architecture by using digital valves, it provides the system level capability and flexibility for energy saving and productivity improvement. There are many challenges in fully realizing the full efficiency benefits of the system in an actual application. These challenges include packaging, durability, a change in the operator's perception of the vehicle as well as hydraulic system performances during operation. One significant issue is the noise, vibration and harshness (NVH) of the system. Due to the nature of the digital valve operation, there are severe transient dynamics in the fluid system.
2015-06-15
Technical Paper
2015-01-2273
Curtis Jones, Zhengyu Liu, Suhas Venkatappa, James Hurd
Abstract This paper presents the methodology of predicting vehicle level automotive air-handling system air-rush noise sound quality (SQ) using the sub-system level measurement. Measurement setup in both vehicle level and sub-system levels are described. To assess the air-rush noise SQ, both 1/3 octave band sound pressure level (SPL) and overall Zwicker's loudness are used. The “Sound Quality Correlation Functions (SQCF)” between sub-system level and vehicle level are developed for the specified climate control modes and vehicle segment defined by J.D. Power & Associates, while the Zwicker's loudness is calculated using the un-weighted predicted 1/3 octave band SPL. The predicting models are demonstrated in very good agreement with the measured data. The methodology is applied to the development of sub-system SQ requirement for upfront delivery of the optimum design to meet global customer satisfaction
2015-06-15
Technical Paper
2015-01-2258
Gil-Jun Lee, Kichang Kim, Jay Kim
Abstract Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
2015-06-15
Technical Paper
2015-01-2295
Aniket Parbat, Todd Tousignant, Kiran Govindswamy
Abstract The definition of vehicle and powertrain level NVH targets is one of the first tasks toward establishing where a vehicle's NVH behavior will reside with respect to the current or future state of industry. Realization of vehicle level NVH targets relies on a combination of competitive powertrain (source) and vehicle (path) NVH performance. Assessment of vehicle NVH sensitivity is well understood, and can be accomplished through determination of customer interface NVH response to measured excitations at the source input locations. However, development of appropriate powertrain source targets can be more difficult, particularly related to sound quality. This paper discusses various approaches for definition of powertrain targets for sound quality, with a specific focus on impulsive noise.
2015-06-15
Technical Paper
2015-01-2324
Hangsheng Hou, Guiping Yue
Abstract When a sunroof opens to let in fresh air while driving, there might be several noise issues associated with it. The most common and painful one is the wind throb issue, which is nevertheless largely resolved by implementing a sufficiently high wind deflector along the front edge of the sunroof. However, with the wind throb suppressed, other sound quality issues might emerge. The most notable one is the hissing noise issue, which becomes increasingly objectionable with the increase of vehicle speed. This work looks into the impact of sunroof deflector on interior sound quality with the consideration of wind throb, hissing noise and booming noise in terms of psychoacoustic attributes that could be felt subjectively. The goal is to achieve a better understanding of the sound quality associated with the sunroof deflector design, and inspire a balanced design, potentially targeting the most NVH demanding customers in the premium vehicle segment.
2015-06-15
Technical Paper
2015-01-2342
Jun Zhang, Jian Pang, Siwen Zhang, Xiaoxuan Zhang, Congguang Liu
Abstract A lightweight design method of vehicle dash insulators is proposed and investigated in this paper. The lightweight dash insulator, which is composed of double layers of cotton felt with different density and a layer of polyethylene (PE) film and has 55% decrease in weight, is developed and applied in a passenger car, instead of the traditional “heavy layer-soft layer” dash insulator. To evaluate the NVH performance of the lightweight dash insulator, the noise reduction (NR) level index is calculated by using SEA simulation and the sound pressure level and sound qualities in the vehicle are tested under the driving conditions for wide open throttle acceleration in third gear and 60km/h cruising in fourth gear. The simulation and test results show that the vehicle with the lightweight dash insulator has better NVH performance.
2015-06-15
Technical Paper
2015-01-2249
Saad Bennouna, Said Naji, Olivier Cheriaux, Solene Moreau, Boureima Ouedraogo, Jean Michel Ville
Abstract Passengers' thermal comfort inside a car cabin is mainly provided by the Heating, Ventilation and Air Conditioning (HVAC) module. Air provided by HVAC is blown via a blower, passing through different components: flaps, thermal exchangers, ducts… and then distributed to car cabin areas. Interaction between airflow and HVAC components generates noises that emerge in car cabin. Due to this fact, noise is naturally created and its level is linked to flow rate. Valeo is aiming, though CEVAS project, to develop a prediction tool which will provide HVAC spectrum and sound quality data. This tool will be based, in particular, on aeroacoustic measurements using 2N-ports model and Particle Image Velocimetry methods to provide characteristics of HVAC components.
2015-06-15
Technical Paper
2015-01-2367
David Lennström, Arne Nykänen
Abstract When it comes to the acoustic properties of electric cars, the powertrain noise differs dramatically compared to traditional vehicles with internal combustion engines. The low frequency firing orders, mechanical and combustion noise are exchanged with a more high frequency whining signature due to electromagnetic forces and gear meshing, lower in level but subject to annoyance. Previous studies have highlighted these differences and also investigated relevant perception criteria in terms of psycho-acoustic metrics. However, investigations of differences between different kinds of electric and hybrid electric cars are still rare. The purpose of this paper was to present the distribution of tonal components in today's hybrid/electric vehicles. More specifically, the number of prominent orders, their maximum levels and frequency separation were analyzed for the most critical driving conditions. The study is based upon measurements made on 13 electrified cars on the market.
2015-06-15
Journal Article
2015-01-2263
Saeed J. Siavoshani, Prasad Vesikar
The intent of this paper is to document comprehensive test-based approach to analyze the door-closing event and associated sound using structural and acoustic loads developed during the event. This study looks into the door-closing phenomenon from the structural interaction point of view between the door and the body of the vehicle. The study primarily focuses on distributing the door and body interaction as discrete multiple structural and acoustic phenomena. It also emphasizes on the structural and acoustic loads developed by the discretized interactions at the interfaces between the door and the body frame. These interfaces were treated to be the load paths from the door to the body. The equivalent structural and acoustic loads were calculated indirectly using the well-known Transfer Path Analysis (TPA) methodology for structural loads and the Acoustic Source Quantification (ASQ) methodology for acoustic loads.
2015-06-15
Journal Article
2015-01-2333
Brandon Sobecki, Patricia Davies, J Stuart Bolton, Frank Eberhardt
Abstract Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
2015-06-15
Journal Article
2015-01-2216
Dong Chul Park, Eun Soo Jo, Seokgwan Hong, Michael Csakan
Abstract An important trend among vehicle NVH engineers is the production of attractive engine acceleration sound quality for the enhancement of a vehicle's image and performance. In addition, customers have increasing interest and enjoyment in customizing their cars to reflect their personal taste and preferences. The PESS (Personalized Engine Sound System) has been developed for making a unique and individually customizable vehicle concept. The system allows the customers an opportunity to create a variety of engine sounds in a single vehicle using active sound design technology. In this system, three different engine sound concepts are pre-defined, Dynamic, Sporty, and Extreme. Each of the engine sounds can then be adjusted with parameters that determine the timbre, such as main order, rumble, and high order. In addition, the pedal position during acceleration has also been used as a parameter to further personalize the experience.
2015-06-15
Journal Article
2015-01-2285
Arne Nykänen, David Lennström, Roger Johnsson
Abstract Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
2015-06-15
Journal Article
2015-01-2224
Yong Xu
Abstract An adaptive feed-forward active control system for improving the sound quality of vehicle engine noise is presented in this paper. Based on the narrow-band and periodic properties of engine noise, an artificial waveform, which was synthesized with sinusoidal components at the fundamental frequency of the engine noise and its harmonics, was adopted as the reference signal. Then these primary noise components were canceled via an adaptive notch filter bank, the coefficients of which were updated using the FXLMS algorithm. The core of the designed system is a new algorithm for improving the quality characteristics of the residual noise by adjusting the gain values of the noise component at each reference frequency. The feasibility and advantages of the designed system were validated through both simulation and practical vehicle tests.
2015-06-15
Journal Article
2015-01-2220
Ji Xu, Guohua Sun, Tao Feng, Mingfeng Li, Teik Lim
Abstract This paper describes an active sound tuning (AST) system for vehicle powertrain response. Instead of simply aiming to attenuate cabin interior noise, AST system is capable of reshaping the powertrain response based on predetermined vehicle sound quality criteria. However, conventional AST systems cannot yield a balanced result over the broad frequency range when applied to powertrain noise. It is due to the fact that existing systems are typically configured with the filtered-x least mean square (FXLMS) algorithm or its modified versions, which has inherent frequency dependent convergence behavior due to large dynamic range of secondary path (the electro-acoustic path from the control speaker to the error microphone). Therefore, fast convergence can only be reached at the resonant frequencies.
2015-06-15
Journal Article
2015-01-2336
Anastasios Arvanitis, Jeff Orzechowski, Todd Tousignant, Kiran Govindswamy
Abstract Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
2015-04-14
Journal Article
2015-01-0225
Satoru Komatsu, Suguru Imai, Kenji Taguchi, Tatsuya Kashiwa
Abstract The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
Viewing 1 to 30 of 183

Filter