Criteria

Text:
Display:

Results

Viewing 1 to 30 of 19720
2017-10-08
Technical Paper
2017-01-2371
Hiroki Kambe, Naoto Mizobuchi, Eriko Matsumura
Abstract Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
2017-10-08
Technical Paper
2017-01-2387
Yonge Wu, Xingyu Liang, Ge-Qun Shu, Boxi Shen, Yuesen Wang, Xikai Liu, Zhijun Li
Abstract Currently, selective catalytic reduction (SCR) is one of the main after-treatment systems to control diesel engine NOx emission. But the SCR system is bulky, considering the limited installation space. Therefore, the design of SCR system with the compact structure and reliable performance is one of the essential topics. In this study, the structure parameters, such as catalyst cross-sectional area, catalyst length, substrate wall thickness, coating thickness, channels per square inch (CPSI) of substrate, are taken into consideration to study their effects on the SCR performance and narrow the scope of various structural parameters for the following optimization study. Then, the structural parameters of the SCR reactor are optimized by considering the coupling relationship among these structural parameters by using the Response Surface Methodology (RSM) at high load of diesel engine.
2017-10-08
Technical Paper
2017-01-2384
Ijhar H. Rusli, Svetlana Aleksandrova, Humberto Medina, Stephen F. Benjamin
Abstract In aftertreatment system design, flow uniformity is of paramount importance as it affects aftertreatment device conversion efficiency and durability. The major trend of downsizing engines using turbochargers means the effect of the turbine residual swirl on the flow needs to be considered. In this paper, this effect has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. With no swirl, the flow in the catalyst monolith is highly non-uniform with maximum velocities near the diffuser axis. At high swirl levels, the flow is also highly nonuniform with the highest velocities near the diffuser wall.
2017-10-08
Technical Paper
2017-01-2382
Tul Suthiprasert, Sirichai Jirawongnuson, Ekathai Wirojsakunchai, Tanet Aroonsrisopon, Krisada Wannatong, Atsawin Salee
Abstract The diesel dual fuel engine emits CH4 in the exhaust gas. This makes the exhaust gas more difficult to treat comparing to the exhaust gas from the conventional engine since CH4 requires high exhaust temperature to oxidize. In addition, another parameter such as exhaust flow rate, specie concentrations, especially CO, C3H8, and H2O have tremendous impact on Diesel Oxidation Catalyst performance on reducing CH4. This research is aimed to propose a kinetic model based on Langmuir Hinshelwood mechanisms that includes several terms such as CH4, C3H8, CO, O2, and H2O concentrations in order to gain a better understanding on the catalytic reaction and to provide a simulation with an accurate prediction. The model’s kinetic parameters are determined from the experiment by using synthetic gas. The composition of synthetic gas is simulated to be similar to the real exhaust gas from diesel dual fuel engines.
2017-10-08
Technical Paper
2017-01-2381
Kristian Hentelä, Ossi Kaario, Vikram Garaniya, Laurie Goldsworthy, Martti Larmi
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The model used is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
2017-10-08
Technical Paper
2017-01-2186
Lukas Urban, Michael Grill, Sebastian Hann, Michael Bargende
Abstract Engine Knock is a stochastic phenomenon that occurs during the regular combustion of spark ignition (SI) engines and limits its efficiency. Knock is triggered by an autoignition of local “hot spots” in the unburned zone, ahead of the flame front. Regarding chemical kinetics, the temperature and pressure history as well as the knock resistance of the fuel are the main driver for the autoignition process. In this paper, a new knock modeling approach for natural gas blends is presented. It is based on a kinetic fit for the ignition delay times that has been derived from chemical kinetics simulations. The knock model is coupled with an enhanced burn rate model that was modified for Methane-based fuels. The two newly developed models are incorporated in a predictive 0D/1D simulation tool that provides a cost-effective method for the development of natural gas powered SI engines.
2017-10-08
Technical Paper
2017-01-2185
Chao He, Jiaqiang Li, Longqing Zhao, Yanyan Wang, Wei Gu
Abstract More and more stringent emission regulations and the desire to reduce fuel consumption lead to an increasing demand for precise and close-loop combustion control of diesel engines. Cylinder pressure-based combustion control is gradually used for diesel engines in order to enhance emission robustness and reduce fuel consumption. However, it increases the cost. In this paper, a new prediction method of combustion parameters is presented for diesel engines. The experiment was carried out on a test bench to obtain the ECU (Electronic Control Unit) signals of a heavy-duty diesel engine by calibration software. The combustion parameters was measured by a combustion analyzer, such as maximum cylinder pressure (MCP), maximum combustion temperature (MCT), and combustion center of gravity (CA50). A combustion model using genetic programming (GP) is built. The input parameters are chosen from the ECU signals, such as engine speed, engine load, injection quantities, inlet air flow rate.
2017-10-08
Technical Paper
2017-01-2188
Bruno S. Soriano, Edward S. Richardson, Stephanie Schlatter, Yuri M. Wright
Abstract Dual-fuel combustion is an attractive approach for utilizing alternative fuels such as natural gas in compression-ignition internal combustion engines. In this approach, pilot injection of a more reactive fuel provides a source of ignition for the premixed natural gas/air. The overall performance combines the high efficiency of a compression-ignition engine with the relatively low emissions associated with natural gas. However the combustion phenomena occurring in dual-fuel engines present a challenge for existing turbulent combustion models because, following ignition, flame propagates through a partially-reacted and inhomogeneous mixture of the two fuels. The objective of this study is to test a new modelling formulation that combines the ability of the Conditional Moment Closure (CMC) approach to describe autoignition of fuel sprays with the ability of the G-equation approach to describe the subsequent flame propagation.
2017-10-08
Technical Paper
2017-01-2190
Alessandro D'Adamo, Marco Del Pecchia, Sebastiano Breda, Fabio Berni, Stefano Fontanesi, Jens Prager
Abstract CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern internal combustion engines. Focusing on spark-ignited units, most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame propagation speed as a background to predict the turbulent flame speed. This, in turn, is a fundamental requirement to model the effective burn rate. A consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting of combustion experiments. However, these last are conducted at pressure and temperature ranges largely different from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted. As a consequence, relevant differences between proposed correlations emerge even for the same fuel and conditions.
2017-10-08
Technical Paper
2017-01-2184
Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays, the development of a new engine is becoming more and more complex due to conflicting factors regarding technical, environmental and economic issues. The experimental activity has to comply with the above complexities, resulting in increasing cost and duration of engine development. For this reason, the simulation is becoming even more prominent, thanks to its lower financial burden, together with the need of an improved predictive capability. Among the other numerical approaches, the 1D models represent a proper compromise between reliability and computational effort, especially if the engine behavior has to be investigated over a number of operating conditions. The combustion model has a key role in this contest and the research of consistent approaches is still on going. In this paper, two well-assessed combustion models for Spark Ignition (SI) engines are described and compared: the eddy burn-up theory and the fractal approach.
2017-10-08
Technical Paper
2017-01-2196
Giuseppe Cicalese, Fabio Berni, Stefano Fontanesi, Alessandro D'Adamo, Enrico Andreoli
Abstract High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
2017-10-08
Technical Paper
2017-01-2197
Vignesh Pandian Muthuramalingam, Anders Karlsson
Abstract Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
2017-10-08
Technical Paper
2017-01-2192
Shenghui Zhong, Zhijun Peng, Yu Li, Hailin Li, Fan Zhang
Abstract A 3-D DNS (Three-Dimensional Direct Numerical Simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristics of turbulent premixed oxy-fuel combustion in the condition relevant to Spark Ignition (SI) engines. First, 1-D (one-dimensional) laminar freely propagating premixed flame is examined to show a consistent combustion temperature for different dilution cases, such that 73% H2O and 66% CO2 dilution ratios are adopted in the following 3-D DNS cases. Four 3-D DNS cases with various turbulence intensities are conducted. It is found that dilution agents can reduce the overall flame temperature but with an enhancement of density weighted flame speed. CO2 dilution case shows the lowest flame speed both in turbulent and laminar cases.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Abstract Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
2017-10-08
Technical Paper
2017-01-2193
Andreas Nygren, Anders Karlsson
Abstract When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
2017-10-08
Technical Paper
2017-01-2199
Maria Cristina Cameretti, Vincenzo De Bellis, Luca Romagnuolo, Agostino Iorio, Luigi Maresca
Abstract In recent years, engine manufacturers have been continuously involved in the research of proper technical solutions to meet more and more stringent CO2 emission targets, defined by international regulations. Many strategies have been already developed, or are currently under study, to attain the above objective. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a significant importance, contributing to improve the burning rate, to increase the thermal efficiency, and to reduce the cyclic variability. It is well-known that turbulence production is mainly achieved during the intake stroke. Moreover, it is strictly affected by the intake port geometry and orientation.
2017-10-08
Technical Paper
2017-01-2202
Shiyou Yang
Abstract This work presents an application of two sub-models relative to chemical-kinetics-based turbulent pre-mixed combustion modeling approach on the simulation of burn rate and emissions of spark ignition engines. In present paper, the justification of turbulent pre-mixed combustion modeling directly based on chemical kinetics plus a turbulence model is given briefly. Two sub-models relative to this kind of pre-mixed combustion modeling approach are described generally, including a practical PRF (primary reference fuel) chemical kinetic mechanism which can correctly capture the laminar flame speed under a wide range of Ford SI (spark ignition) engines/operating conditions, and an advanced spark plug ignition model which has been developed by Ford recently.
2017-10-08
Technical Paper
2017-01-2201
Zhongye Cao, Tianyou Wang, Kai Sun, Lei Cui, Yong Gui
Abstract For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.
2017-10-08
Technical Paper
2017-01-2215
Mingming Ma
Abstract A lubricating system modeling method based on flight test data is proposed in this paper. ANN model based on a large number of flight test data is trained and validated, and models of 6 lubricating system parameters in all engine operation settings and whole flight envelope are established. Model results are in good agreement with flight test results, which shows feasibility and effectiveness of the presented modeling method. The model results are packaged in dynamic link library, and the coordination between calculating model and GDAS is accomplished. Comparison of model and flight test results in real-time monitoring of flight test comes true, thus on-line trend monitoring of oil parameters is implemented and applied. Additionally, input parameters are gradually decreased as new input parameter group of ANN structure. Oil parameter model is trained and validated again with the new group of parameters, until leading to unacceptable bias between model and flight test results.
2017-10-08
Technical Paper
2017-01-2211
Mengqiu Jia, Zhen Lu, Tianyou Wang, Yufeng Li, Yanzhe Sun, Ming Wen, Zhizhao Che, Kai Sun
Abstract The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
2017-10-08
Technical Paper
2017-01-2219
Xihui Wang
Abstract The conventional cooling fluids in vehicle engine cooling water jacket have relatively poor heat transfer performance. The key to enhance heat transfer in cooling-jacket is to research a kind of new coolants. Nanofluids have heat transfer enhancement merits. In present study, the numerical simulation on Fe3O4 nanofluid flow in cooling water jacket of Gasoline direct injection engine was performed using computational fluid dynamics ( CFD) software FLUENT. The heat transfer coefficient of nanofluids was calculated and verified by experiment. Fe3O4 nano-particles were used in mixture of water/ethylene glycol as a base fluid. The thermal performance of the nanofluid was studied, also the thermal performance of a cooling-jacket was studied with CFD technology. The simulation was performed for different volumetric concentrations of(1%,2%,5%) nanofluids at different engine speeds. The results showed that heat transfer enhanced compared to the base fluid.
2017-10-08
Technical Paper
2017-01-2256
Muhammad Umer Waqas, Kai Morganti, Jean-Baptiste Masurier, Bengt Johansson
Abstract The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions.
2017-10-08
Technical Paper
2017-01-2261
Xinyan Wang, Hua Zhao
Abstract The spark ignition (SI) - controlled auto-ignition (CAI) hybrid combustion, also known as spark-assisted compression ignition (SACI), is achieved by utilizing the temperature and pressure rise from the early flame propagation induced by the spark-ignition to trigger the auto-ignition of the remaining unburned mixture. This hybrid combustion concept can be used to effectively extend the operating range of gasoline CAI combustion and achieve smooth transitions between SI and CAI combustion mode in gasoline engines. However, the significant cycle-to-cycle variation (CCV) of the SI-CAI hybrid combustion hinders the practical application of the hybrid combustion. In order to understand the cause of its high CCVs, the SI-CAI hybrid combustion process in a gasoline engine was studied in this study by the large eddy simulations (LES). The turbulence is modelled by the sub-grid k model. The spark ignition and subsequent flame propagation were modelled by the ECFM-3Z LES model.
2017-10-08
Technical Paper
2017-01-2280
Yuzuru Nada, So Morimoto, Yoshiyuki Kidoguchi, Ryu Kaya, Hideaki Nakano, Shinichi Kobayashi
Abstract The aim of this study is to clarify the mixture formation in the combustion chamber of our developed natural gas engine incorporating the sub-chamber injection system, in which natural gas is directly injected into a combustion sub-chamber in order to completely separate rich mixture in the sub-chamber, suitable for ignition, from ultra-lean mixture in the main chamber. Mixture distributions in chambers with and without sub-chamber were numerically simulated at a variety of operating conditions. The commercial software of Fluent 16.0 was used to conduct simulations based on Reynolds averaged Navier-Stokes equations in an axial 2 dimensional numerical domain considering movements of piston. Non-reactive flow in the combustion chamber was simulated before the ignition timing at an engine speed of 2000 rpm. The turbulence model employed here is standard k-ε model. Air-fuel ratio is set with a lean condition of 30.
2017-10-08
Technical Paper
2017-01-2282
Gen Chen, Wenxin Cai, Jianguang Zhou, Christian Spanner, Heribert Fuchs, Werner Schrei, Karl Weihrauch
Abstract A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
2017-10-08
Technical Paper
2017-01-2284
Haifei Zheng
Abstract The potential benefits of reheat burner placed between turbine stages for propulsion system have been recognized for nearly a century. Compared to the conventional non-reheat engines, the turbine inter-guide-vane burner (TIB) engines by using jet-swirl flow scheme (high-G loading) are shown to have a higher specific thrust with no or only small increase in thrust specific fuel consumption. But, it is a known fact that the G loading in the circumferential cavity is inversely proportional to the radius of the circumferential cavity. If one needs to scale this configuration for a larger spool of turbine components, the effeciency of the high G operation and obtained benefits on flame speed will reduce and hence the performance will de-grade.
2017-10-08
Technical Paper
2017-01-2273
Xiaokun Nie, Wanhua Su
Abstract A numerical simulation was performed to investigate the pilot ignited natural gas combustion process in a direct injection natural gas engine. Various mixture distribution characteristics were compared in terms of the evolution of mixture equivalent ratio distributions and mixture concentration stratifications around top dead center (TDC). Based on above, the pilot injections were specially designed to investigate ignition core formation and its effects on natural gas combustion process. The result shows that pilot ignition sites have great impacts on pilot fuel ignition process and natural gas combustion process. The pilot ignition site on the region with rich NG/Air mixture is disadvantageous to the pilot fuel ignition due to a lack of oxygen, which is not beneficial to ignition core formation.
2017-10-08
Technical Paper
2017-01-2310
Xiaoyan Jia, Baigang Sun, Dongwei Wu, Dan Xu, Wei Zang, Wei Shang, Jie Wang
Abstract The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
2017-10-08
Technical Paper
2017-01-2317
Om Prakash Saw, Yashas Karaya, J M Mallikarjuna
Abstract The mixture formation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, piston profile is such that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In these engines, fuel injection pressure and timing play an important role in creating a combustible mixture near the spark plug. Therefore, in this study, an attempt has been made to understand the effect of fuel injection pressure with single and split injection strategy on the mixture formation in a four-stroke, wall-guided GDI engine operating under stratified conditions by using computational fluid dynamics (CFD) analysis. Four fuel injection pressures viz., 90, 120, 150 and 180 bar are considered for the analysis.
2017-10-08
Technical Paper
2017-01-2316
Yuhan Huang, Guang Hong, John Zhou
Abstract Ethanol direct injection (EDI) has great potential in facilitating the downsizing technologies in spark ignition engines due to its strong anti-knock ability. The fuel temperature may vary widely from non-evaporating to flash-boiling sprays in real engine conditions. In this study, a CFD spray model was developed in the ANSYS Fluent environment, which was capable to simulate the EDI spray and evaporation characteristics under non-evaporating, transition and flash-boiling conditions. The turbulence was modelled by the realizable k-ε model. The Rinzic heterogeneous nucleation model was applied to simulate the primary breakup droplet size at the nozzle exit. The secondary breakup process was modelled by the Taylor Analogy Breakup model. The evaporation process was modelled by the Convection/Diffusion Controlled Model. The droplet distortion and drag, collision and droplet-wall interaction were also included.
Viewing 1 to 30 of 19720