Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3147
2017-03-28
Technical Paper
2017-01-1637
David Cheng
Abstract This is a new design for sensor extreme long travel range detection technology especially for clutch master cylinder piston position detection and fork position detection in transmission application to replace PLCD (Permanent magnetic Linear Contactless Displacement) platform with simple manufacturing process and high accuracy. The main innovation point includes integrating a ferromagnetic concentrator into sensor module to enhance magnetic flux density at remote area of travel range and applying 3D Hall array with microcontroller for signal post process to guarantee the accuracy of sensor. SPI mode is used for communication between 3D Hall array and microcontroller while a new signal post process method with self-learning calibration is applied in microcontroller algorithm.
2017-03-28
Technical Paper
2017-01-1409
Markus Schratter, Susie Cantu, Thomas Schaller, Peter Wimmer, Daniel Watzenig
Abstract Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
2017-03-28
Technical Paper
2017-01-1140
Yang Xu, Yuji Fujii, Edward Dai, James McCallum, Gregory Pietron, Guang Wu, Hong Jiang
Abstract A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
2017-03-28
Technical Paper
2017-01-1638
Felix Gow, Lifeng Guan, Jooil Park
Abstract Tire Pressure Monitoring System (TPMS) sensor measures air pressure and temperature in the tire and transmits tire information as wireless messages to TPMS central unit which consists of Radio Frequency (RF) receiver. TPMS central unit needs to determine the exact sensor locations (e.g. Front Left, Front Right, Rear Left or Rear Right) in order to correctly identify the location of the tire with pressure out of the desired range. The identified tire with abnormal pressure is highlighted on dash board in the car. Thus, determination of the location of a particular tire made automatically by the TPMS system itself or tire localization is required. TPMS tire localization is implemented currently in several methods. A new method is proposed in this paper. The proposed method uses at least two RF transceivers as repeaters. Each transceiver receives wireless messages (eg.
2017-03-28
Technical Paper
2017-01-1633
Eiji Kojima, Kazuhiko Kano, Hiroyuki Wado, Noriyuki Iwamori
Abstract In automotive applications, magnetic field sensors are widely used for detecting position and current. However, magnetic field sensors are required to be highly precise with good usability. To satisfy demand, we have developed a graphene Hall sensor that senses magnetic fields by the Hall effect. The sensitivity of a Hall sensor is proportional to the carrier mobility, and graphene has an extremely high carrier mobility compared with conventional materials like Si, GaAs and InSb. Thus, graphene Hall sensors are expected to give high sensitivity that will enable sensing of the Earth’s magnetic field. In addition, graphene has a low temperature dependence on carrier mobility due to its ballistic transport, so good usability in actual use is also anticipated. In this paper, we demonstrate a graphene Hall sensor made using conventional Si process technology.
2017-03-28
Technical Paper
2017-01-1626
Tomas Poloni, Jianbo Lu
Abstract This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
2017-03-28
Technical Paper
2017-01-1065
Douglas R. Martin, Benjamin Rocci
Abstract Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
2017-03-28
Technical Paper
2017-01-1222
Jeongwon Rho, Jeongbin Yim, Daewoong Han, Gubae Kang, Seongyeop Lim
Abstract The current sensor for motor control is one of the main components in inverters for eco-friendly vehicles. Recently, as the higher performance of torque control has become required, the current sensor measurement error and accuracy of motor controls have become more significant. Since the response time of the sensor affects the motor output power, the response delay of the sensor causes measurement errors of the current. Accordingly, the voltage vector changes, and a motor output power deviation occurs. In the case of the large response delay of the sensor, as motor speed increases, then difference between motoring and generating output power becomes larger and larger. This results in the deterioration of power performance in high-speed operation. The deviation of the voltage vector magnitude is the main cause of motor output power deviation and imbalance through the simulation.
2017-03-28
Technical Paper
2017-01-1640
Peng Liu, Liyun Fan, Wenbo Peng, Xiuzhen Ma, Enzhe Song
Abstract A novel high-speed electromagnetic actuator for electronic fuel injection system (EFIS) of diesel engine is proposed in this paper. By using a permanent magnet and an annular flange, the design of the novel actuator aims to overcome the inherent drawbacks of the conventional solenoid electromagnetic actuator, such as high power consumption and so on. A method of multi-objective optimization combined with response surface methodology and Genetic Algorithm (GA) is employed to obtain the optimal design of the novel actuator. First, combined with design of experiments and finite element analysis, the second order polynomial response surface models (SOPRSM) of electromagnetic forces are produced by the least square principle. Second, the complete multi-objective optimization mathematical model (MOMM) of the novel actuator based on SOPRSM is built, aiming to maximize the net electromagnetic force on the armature and minimize the drive current.
2017-03-28
Technical Paper
2017-01-1653
Jon Barton Shields, Jörg Huser, David Gell
Abstract This paper discusses the merits, benefits and usage of autonomous key management (with implicit authentication) (AKM) solutions for securing ECU-to-ECU communication within the connected vehicle and IoT applications; particularly for transmissions between externally exposed, edge ECU sensors connected to ECUs within the connected vehicle infrastructure. Specific benefits addressed include reductions of communication latency, implementation complexity, processing power and energy consumption. Implementation issues discussed include provisioning, key rotation, synchronization, re-synchronization, digital signatures and enabling high entropy.
2017-03-28
Technical Paper
2017-01-1654
Arun Ganesan, Jayanthi Rao, Kang Shin
Abstract Modern vehicles house many advanced components; sensors and Electronic Control Units (ECUs) — now numbering in the 100s. These components provide various advanced safety, comfort and infotainment features, but they also introduce additional attack vectors for malicious entities. Attackers can compromise one or more of these sensors and flood the vehicle’s internal network with fake sensor values. Falsified sensor values can confuse the driver, and even cause the vehicle to misbehave. Redundancy can be used to address compromised sensors, but adding redundant sensors will increase the cost per vehicle and is therefore less attractive. To balance the need for security and cost-efficiency, we exploit the natural redundancy found in vehicles. Natural redundancy occurs when the same physical phenomenon causes symptoms in multiple sensors. For instance, pressing the accelerator pedal will cause the engine to pump faster and increase the speed of the vehicle.
2017-03-28
Technical Paper
2017-01-0024
Yuto Imanishi, Naoyuki Tashiro, Yoichi Iihoshi, Takashi Okada
Abstract In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
2017-03-28
Technical Paper
2017-01-0025
Takayuki Kitamura, Naotsugu Shimizu, Yasuyuki Miyake
Abstract In the last decade, radar-based Advanced Driver Assistance Systems (ADAS) have improved safety of transportation. Today, the standardization of ADAS established by New Car Assessment Program (NCAP) is expected to expand its market globally. One of the key technologies of ADAS is the rear-side monitoring system such as Blind Spot Warning (BSW) and Closing Vehicle Warning (CVW). It is required to expand its detection range so that it can monitor not only nearside targets for BSW, but farther targets for CVW. These applications can be achieved using two radar sensors installed at rear-side corner of the vehicle. However, the expanded detection range causes undesirable target detections and decreases target recognition performance. In this paper, a novel solution to improve the performance using DCMP(Directional-Constrained Minimization of Power)-based Beamspace technology using Two-frequency continuous wave (2FCW also known as FSK) is introduced.
2017-03-28
Technical Paper
2017-01-0027
Li Xu, Eric Tseng, Thomas Pilutti, Steven Schondorf
Abstract In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
2017-03-28
Technical Paper
2017-01-0030
Shunsuke Kogure, Takashi Kato, Shin Osuga
Abstract With the improved safety performance of vehicles, the number of accidents has been decreasing. However, accidents due to driver distraction still occur, which means that there is a high need to determine whether a driver is properly looking at the surroundings. Meanwhile, with the trend toward partial automatic driving of vehicles in recent years, it is also urgently required that the state of the driver be grasped. Even if automatic driving is not installed, it is desired that the state of the driver be grasped and an application for control be performed depending on the state of the driver. Under these circumstances, we have built an algorithm that determines of the direction a driver is looking, to make a basic determination of whether or not the driver is in a state suitable for safe driving of the vehicle.
2017-03-28
Technical Paper
2017-01-0028
Xin Li, Weiwen Deng
Abstract This paper proposes a Real-Time Estimation of Radar Cross Section for ADAS Simulation, aimed to enable math-based virtual development and test of ADAS. The electromagnetic scattering mechanism is firstly analyzed with targets to be typical objects in traffic. Then a geometric model is developed, in which the object surfaces are divided into multiple scattering zones corresponding to different scattering mechanism. According to different surface curvature radius and scattering mechanism, the scattering zones are approximately equivalent to plane, cylinder, sphere and so on. Using the ARD model based on an improved physical optics and diffraction theory, RCS value of a zone is estimated. Then the RCS of the object surface is obtained by vector superposition of all zones. Some typical simulation comparisons are carried out, which proves the practicability of our method.
2017-03-28
Technical Paper
2017-01-0035
Binyu Mei, Xuexun Guo, Gangfeng Tan, Yongbing Xu, Mengying Yang
Abstract Vehicle speed is an important factor to driving safety, which is directly related to the stability and braking performance of the vehicle. Besides, the precise measurement of the vehicle speed is the basis of some vehicle active safety systems. Even in the future intelligent transportation, high quality speed information will also play an important role. The commonly used vehicle speed measurement techniques are based on the wheel speed sensors, which are not accurate, especially when the wheels’ slip rate is not equal to zero. Focusing on these issues, image matching technology has been used to measure the vehicle speed in this paper. The image information of the road in the front of the vehicle is collected, and the pixel displacement of the vehicle is calculated by the matching system, thus accurately vehicle speed can be obtained. Compared with conventional speed measure technology, it has the advantages of wide measuring range, and high accuracy.
2017-03-28
Technical Paper
2017-01-0039
Toshiya Hirose, Yasufumi Ohtsuka, Masato Gokan
Abstract A vehicle-to-vehicle communication system (V2V) sends and receives vehicle information by wireless communication and assists safe driving. The present study investigated the activation timings of collision information support, collision caution support, and collision warning support provided by a V2V in an experiment using a driving simulator for four situations of (1) assistance in braking, (2) assistance in accelerating, (3) assistance in making a right turn, and (4) assistance in making a left turn at a blind intersection. The four situations are common scenarios of traffic accidents in Japan. Safety margins for collision information support and collision warning support were the time required for the driver to fully apply the brake pedal, while the safety margin for collision caution support was the time required for the driver to begin applying the brake pedal. The study investigated the effects of adding safety margins to standard activation timings.
2017-03-28
Technical Paper
2017-01-0040
Michael Hafner, Thomas Pilutti
Abstract We propose a steering controller for automated trailer backup, which can be used on tractor-trailer configurations including fifth wheel campers and gooseneck style trailers. The controller steers the trailer based on real-time driver issued trailer curvature commands. We give a stability proof for the hierarchical control system, and demonstrate robustness under a specific set of modeling errors. Simulation results are provided along with experimental data from a full-size pickup truck and 5th wheel trailer.
2017-03-28
Technical Paper
2017-01-0038
Corwin Stout, Milos Milacic, Fazal Syed, Ming Kuang
Abstract In recent years we have witnessed increased discrepancy between fuel economy numbers reported in accordance with EPA testing procedures and real world fuel economy reported by drivers. The debates range from needs for new testing procedures to the fact that driver complaints create one-sided distribution; drivers that get better fuel economy do not complain about the fuel economy, but only the ones whose fuel economy falls short of expectations. In this paper, we demonstrate fuel economy improvements that can be obtained if the driver is properly sophisticated in the skill of driving. Implementation of SmartGauge with EcoGuide into the Ford C-MAX Hybrid in 2013 helped drivers improve their fuel economy on hybrid vehicles. Further development of this idea led to the EcoCoach that would be implemented into all future Ford vehicles.
2017-03-28
Technical Paper
2017-01-0037
Xianyao Ping, Gangfeng Tan, Yahui Wu, Binyu Mei, Yuxin Pang
Abstract The drivers' hysteretic perception to surrounding environment will affect vehicular fuel economy, especially for the heavy-duty vehicles driving under complex conditions and long distance in mountainous areas. Unreasonable acceleration or deceleration on the slope will increase the fuel consumption. Improving the performance of the engine and the transmission system has limited energy saving potential, and most fuel-efficient driving assistant systems don't consider the road conditions. The main purpose of this research is to introduce an economic driving scheme with consideration of the prestored slope information in which the vehicle speed in mountainous slopes is reasonably planned to guide the driver's behavior for reduction of the fuel consumption. Economic driving optimization algorithm with low space dimension and fast computation speed is established to plan accurate and real-time economic driving scheme.
2017-03-28
Technical Paper
2017-01-0043
Michael Smart, Satish Vaishnav, Steven Waslander
Abstract Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
2017-03-28
Technical Paper
2017-01-0044
Roman Schmied, Gunda Obereigner, Harald Waschl
Abstract In the field of advanced driver assistance systems (ADAS) the capability to accurately estimate and predict the driving behavior of surrounding traffic participants has shown to enable significant improvements of the respective ADAS in terms of economy and comfort. The interaction between the different participants can be an important aspect. One example for this interaction is the car following behavior in dense urban traffic situations. There are different phenomenological or psychological models of human car following which also consider variations between different participants. Unfortunately, these models can seldom be applied for control directly or prediction in vehicle applications. A different way is to follow a control oriented approach by modeling the human as a time delay controller which tracks the inter-vehicle distance. The parameters are typically chosen based on empirical rules and do not consider variations between drivers.
2017-03-28
Technical Paper
2017-01-0042
David Andrade, Rodrigo Adamshuk, William Omoto, Felipe Franco, João Henrique Neme, Sergio Okida, Angelo Tusset, Rodrigo Amaral, Artur Ventura, Max Mauro Dias Santos
Abstract The continuous growth of market for Advanced Driver Assistance Systems based on image processing features leads to the advance of the applied techniques, increasing thus the driving safety. Mostly of the edge detection algorithms are traditional approaches, and to achieve improvements it is necessary to combine different methods. The purpose of this work is to implement a strategy for road lanes detection using the traditional Canny operator. Oriented filters are used to remove unnecessary information and vehicle’s yaw rate signal is used to adaptively correct the filter orientation according to the lane boundaries directions. In sequence, morphological filters using dilation and analysis of connected components are applied in order to remove the noise components of the edge detection stage.
2017-03-28
Technical Paper
2017-01-0047
Jie Bai, Sihan CHEN, Hua Cui, Xin Bi, Libo Huang
Abstract The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
2017-03-28
Technical Paper
2017-01-0046
Mohamed Aladem, Samir Rawashdeh, Nathir Rawashdeh
Abstract To reliably implement driver-assist features and ultimately self-driving cars, autonomous driving systems will likely rely on a variety of sensor types including GPS, RADAR, LASER range finders, and cameras. Cameras are an essential sensory component because they lend themselves to the task of identifying object types that a self-driving vehicle is likely to encounter such as pedestrians, cyclists, animals, other cars, or objects on the road. In this paper, we present a feature-based visual odometry algorithm based on a stereo-camera to perform localization relative to the surrounding environment for purposes of navigation and hazard avoidance. Using a stereo-camera enhances the accuracy with respect to monocular visual odometry. The algorithm relies on tracking a local map consisting of sparse 3D map points. By tracking this map across frames, the algorithm makes use of the full history of detected features which reduces the drift in the estimated motion trajectory.
2017-03-28
Technical Paper
2017-01-0527
Arya Yazdani, Jeffrey Naber, Mahdi Shahbakhti, Paul Dice, Chris Glugla, Stephen Cooper, Douglas McEwan, Garlan Huberts
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
Abstract SAE J211 provides no definitive specification as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for impact data. Accordingly, a 3-2-2-2 array (nine-accelerometer-package or NAP) of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th-percentile-male ATD headform and compared in a variety of impact events and multibody simulations. Appropriate low-pass digital filter cutoff frequencies for differentiating the angular rate sensor data into angular accelerations were sought via residual analysis in accordance with current SAE J211 guidelines.
2017-03-28
Journal Article
2017-01-1450
Daniel Perez-Rapela, Jason Forman, Haeyoung Jeon, Jeff Crandall
Abstract Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
2017-03-28
Technical Paper
2017-01-1288
Noriko Shisa, Shinsuke Ishihara, Yougui Huang, Mikio Asai, Katsuhiko Ariga
Abstract Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Viewing 1 to 30 of 3147