Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3155
2017-09-04
Technical Paper
2017-24-0050
Anjan Rao Puttige, Robin Hamberg, Paul Linschoten, Goutham Reddy, Andreas Cronhjort, Ola Stenlaas
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
2017-09-04
Technical Paper
2017-24-0003
Andreas Sidorow, Vincent Berger, Ghita Elouazzani
Gasoline Engines have typically a waste gate actuator to control the boost pressure. The electrification of the vehicle and combustion engine components leads to new challenges of application of electric actuators in engine components, like turbochargers, which are faced with relatively high ambient temperatures. Another challenge is a simulation and prediction of the mechanical load on the actuator and kinematic components at different application scenarios, which can help to find the optimal solution which fulfills the durability, controllability, etc. targets. This paper deals with a physical dynamic model of an electric waste-gate actuator and kinematic components. The modeling includes a thermal, electrical and mechanical parts of the turbocharger control system and is validated on test-bench and engine measurements including pulsation effects.
2017-09-04
Technical Paper
2017-24-0153
Sergey Shcherbanev, Alexandre De Martino, Andrey Khomenko, Svetlana Starikovskaia, Srinivas Padala, Yuji Ikeda
Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
During transients, engines tend to produce substantially higher peak emissions which are the longer the more important as the steady state emissions are better controller. To this end, they must be measurable in an adequate time scale. While for most emissions there are commercially available sensors of sufficient speed and performance, the same is not true for soot, especially for production engines. Against this background, in the last years we have investigated together with a supplier of measurement systems the possible use of a 50Hz sensor based on LII and of the same size of a standard oxygen probe, and the results were very positive, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like AVL Opacimenter or Microsoot) but confirmed e.g. by incylinder 2 color spectroscopy. The higher speed is also due to the position, as the sensor can be mounted above or below the turbine in a turbocharged CI engine.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOx emissions would allow to eliminate the NOx sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric ox-ide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbu-lence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0045
Blane Scott, Christopher Willman, Ben Williams, Paul Ewart, Richard Stone, David Richardson
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation and comparing the in-cylinder temperatures of port fuel injection (PFI) compared with gasoline direct injection (GDI), so as to explain the differences in volumetric efficiency. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0%; as the pressure increases the precision improves. This allows resolution of temperature differences between PFI and GDI mixture preparation.
2017-06-05
Technical Paper
2017-01-1783
Chris Todter, Olivier Robin, Paul Bremner, Christophe Marchetto, Alain Berry
Abstract Surface pressure measurements using microphone arrays are still challenging, especially in an automotive context with cruising speeds around Mach 0.1. The separated turbulent boundary layer excitation and the side mirror wake flow generate both acoustic and aerodynamic components, which have wavenumbers that differ by a factor of approximately 10. This calls for high spatial resolution measurements to fully resolve the wavenumber-frequency spectrum. In a previous publication [1], the authors reported a micro-electro-mechanical (MEMS) surface microphone array that successfully used wavenumber analysis to quantify acoustic versus turbulence loading. It was shown that the measured surface pressure at each microphone could be strongly influenced by self-noise induced by the microphone “packaging”, which can be attenuated with a suitable windscreen.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
Abstract The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation… Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions.
2017-03-28
Journal Article
2017-01-1465
William R. Bussone, Joseph Olberding, Michael Prange
Abstract SAE J211 provides no definitive specification as to the appropriate procedures for filtering angular rate sensor data prior to differentiation into angular acceleration data, especially for impact data. Accordingly, a 3-2-2-2 array (nine-accelerometer-package or NAP) of linear accelerometers and a triaxial angular rate sensor were mounted into a Hybrid III 50th-percentile-male ATD headform and compared in a variety of impact events and multibody simulations. Appropriate low-pass digital filter cutoff frequencies for differentiating the angular rate sensor data into angular accelerations were sought via residual analysis in accordance with current SAE J211 guidelines.
2017-03-28
Technical Paper
2017-01-1728
Nitin Singh, Aayoush Sharma, Sameer Shah, Balakumar Gardampaali
Abstract In any unlikely event of accidents or vehicle breakdown, there is accumulation of traffic which results in road-blockage and causes in convenience to other vehicles. If this happens in remote areas, the accidents victims are left unattended and there is delay in providing emergency services. In case of traffic, it obstructs the entry of ambulance and rescue team which results in death of passengers. To prevent this mishap, a mechatronics based road block avoidance and accident alarming system is designed which is automated by the use of sensors. The road-block is detected with the help sensors located at regular intervals on road. This input is given to a Local Control Unit (LCU) which is integrated on every road. Several such LCUs are connected to a Main Control Unit (MCU) which is located at the nearest police station. A single MCU covers the area administered by that police station. Additional CCTV cameras are present to give graphical view of accident.
2017-03-28
Technical Paper
2017-01-1727
Yumin Lin, Bo-Chiuan Chen, Hsien-Chi Tsai, Bi-Cheng Luan
Abstract A model-based sensor fault detection algorithm is proposed in this paper to detect and isolate the faulty sensor. Wheel speeds are validated using the wheel speed deviations before being employed to check the sensor measurements of the vehicle dynamics. Kinematic models are employed to estimate yaw rate, lateral acceleration, and steering wheel angle. A Kalman filter based on a point mass model is employed to estimate longitudinal speed and acceleration. The estimated vehicle dynamics and sensor measurements are used to calculate the residuals. Adaptive threshold values are employed to identify the abnormal increments of residuals. Recursive least square method is used to design the coefficients of the expressions for adaptive threshold values, such that the false alarms caused by model uncertainties can be prevented. Different combinations of estimations are employed to obtain 18 residuals.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Technical Paper
2017-01-0068
Pablo Sauras-Perez, Andrea Gil, Jasprit Singh Gill, Pierluigi Pisu, Joachim Taiber
Abstract In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
2017-03-28
Technical Paper
2017-01-0067
Wei Han, Xinyu Zhang, Jialun Yin, Yutong Li, Deyi Li
Abstract Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
2017-03-28
Technical Paper
2017-01-0070
Longxiang Guo, Sagar Manglani, Xuehao Li, Yunyi Jia
Abstract Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
2017-03-28
Technical Paper
2017-01-0069
Venkatesh Raman, Mayur Narsude, Damodharan Padmanaban
Abstract This manuscript compares window-based data imputation approaches for data coming from connected vehicles during actual driving scenarios and obtained using on-board data acquisition devices. Three distinct window-based approaches were used for cleansing and imputing the missing values in different CAN-bus (Controller Area Network) signals. Lengths of windows used for data imputation for the three approaches were: 1) entire time-course for each vehicle ID, 2) day, and 3) trip (defined as duration between vehicle's ignition statuses ON to OFF). An algorithm for identification of ignition ON and OFF events is also presented, since this signal was not explicitly captured during the data acquisition phase. As a case study, these imputation techniques were applied to the data from a driver behavior classification experiment.
2017-03-28
Technical Paper
2017-01-0117
Raja Sekhar Dheekonda, Sampad Panda, Md Nazmuzzaman khan, Mohammad Hasan, Sohel Anwar
Accuracy in detecting a moving object is critical to autonomous driving or advanced driver assistance systems (ADAS). By including the object classification from multiple sensor detections, the model of the object or environment can be identified more accurately. The critical parameters involved in improving the accuracy are the size and the speed of the moving object. All sensor data are to be used in defining a composite object representation so that it could be used for the class information in the core object’s description. This composite data can then be used by a deep learning network for complete perception fusion in order to solve the detection and tracking of moving objects problem. Camera image data from subsequent frames along the time axis in conjunction with the speed and size of the object will further contribute in developing better recognition algorithms.
2017-03-28
Technical Paper
2017-01-0102
Mahdi Heydari, Feng Dang, Ankit Goila, Yang Wang, Hanlong Yang
In this paper, a sensor fusion approach is introduced to estimate lane departure. The proposed algorithm combines the camera, inertial navigation sensor, and GPS data with the vehicle dynamics to estimate the vehicle path and the lane departure time. The lane path and vehicle path are estimated by using Kalman filters. This algorithm can be used to provide early warning for lane departure in order to increase driving safety. By integrating inertial navigation sensor and GPS data, the inertial sensor biases can be estimated and the vehicle path can be estimated where the GPS data is not available or is poor. Additionally, the algorithm can be used to reduce the latency of information embedded in the controls, so that the vehicle lateral control performance can be significantly improved during lane keeping in Advanced Driver Assistance Systems (ADAS) or autonomous vehicles. Furthermore, it improves lane detection reliability in situations when camera fails to detect lanes.
2017-03-28
Technical Paper
2017-01-0108
Zaydounr Y. Rawashdeh, Trong-Duy Nguyen, Anoop Pottammal, Rajesh Malhan
Abstract In this work, Dedicated Short Range Communication (DSRC) capabilities combined with classical autonomous vehicles’ on-board sensors (Camera) are used to trigger a Comfortable Emergency Brake (CEB) for urban traffic light intersection scenario. The system is designed to achieve CEB in two phases, the Automated Comfortable Brake (ACB) and the full stop Automated Emergency Brake (AEB). The ACB is triggered first based on the content of the Signal Phase and Timing (SPaT) / Map data (MAP) messages received from the Road Side Unit (RSU) at larger distances. And, once the traffic light becomes in the detection field of view of the camera, the output of the Camera-based Traffic Light Detection (TLD) and recognition software is fused with the SPaT/MAP content to decide on triggering the full stop AEB. In the automated vehicle, the current traffic light color and duration received in the SPaT message is parsed; and compared with the TLD output for color matching.
2017-03-28
Technical Paper
2017-01-0071
Vahid Taimouri, Michel Cordonnier, Kyoung Min Lee, Bryan Goodman
Abstract While operating a vehicle in either autonomous or occupant piloted mode, an array of sensors can be used to guide the vehicle including stereo cameras. The state-of-the-art distance map estimation algorithms, e.g. stereo matching, usually detect corresponding features in stereo images, and estimate disparities to compute the distance map in a scene. However, depending on the image size, content and quality, the feature extraction process can become inaccurate, unstable and slow. In contrast, we employ deep convolutional neural networks, and propose two architectures to estimate distance maps from stereo images. The first architecture is a simple and generic network that identifies which features to extract, and how to combine them in a multi-resolution framework.
2017-03-28
Technical Paper
2017-01-0072
Yang Zheng, Navid Shokouhi, Amardeep Sathyanarayana, John Hansen
Abstract With the embedded sensors – typically Inertial Measurement Units (IMU) and GPS, the smartphone could be leveraged as a low-cost sensing platform for estimating vehicle dynamics. However, the orientation and relative movement of the smartphone inside the vehicle yields the main challenge for platform deployment. This study proposes a solution of converting the smartphone-referenced IMU readings into vehicle-referenced accelerations, which allows free-positioned smartphone for the in-vehicle dynamics sensing. The approach is consisted of (i) geometry coordinate transformation techniques, (ii) neural networks regression of IMU from GPS, and (iii) adaptive filtering processes. Experiment is conducted in three driving environments which cover high occurrence of vehicle dynamic movements in lateral, longitudinal, and vertical directions. The processing effectiveness at five typical positions (three fixed and two flexible) are examined.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
Abstract In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-1654
Arun Ganesan, Jayanthi Rao, Kang Shin
Abstract Modern vehicles house many advanced components; sensors and Electronic Control Units (ECUs) — now numbering in the 100s. These components provide various advanced safety, comfort and infotainment features, but they also introduce additional attack vectors for malicious entities. Attackers can compromise one or more of these sensors and flood the vehicle’s internal network with fake sensor values. Falsified sensor values can confuse the driver, and even cause the vehicle to misbehave. Redundancy can be used to address compromised sensors, but adding redundant sensors will increase the cost per vehicle and is therefore less attractive. To balance the need for security and cost-efficiency, we exploit the natural redundancy found in vehicles. Natural redundancy occurs when the same physical phenomenon causes symptoms in multiple sensors. For instance, pressing the accelerator pedal will cause the engine to pump faster and increase the speed of the vehicle.
2017-03-28
Technical Paper
2017-01-1653
Jon Barton Shields, Jörg Huser, David Gell
Abstract This paper discusses the merits, benefits and usage of autonomous key management (with implicit authentication) (AKM) solutions for securing ECU-to-ECU communication within the connected vehicle and IoT applications; particularly for transmissions between externally exposed, edge ECU sensors connected to ECUs within the connected vehicle infrastructure. Specific benefits addressed include reductions of communication latency, implementation complexity, processing power and energy consumption. Implementation issues discussed include provisioning, key rotation, synchronization, re-synchronization, digital signatures and enabling high entropy.
2017-03-28
Journal Article
2017-01-1688
Hassene Jammoussi, Imad Makki
The usage of the universal exhaust gas oxygen (UEGO) sensor to control the air-fuel ratio (AFR) in gasoline engines allowed to significantly improve the efficiency of the combustion process and reduce tailpipe emissions. The diagnostics of this sensor is very important to ensure proper operation and indicate the need for service when the sensor fails to accurately determine the AFR upstream of the catalyst. California air resources board (CARB) has imposed several legislations around the operation of the UEGO sensor and particularly when specific faults would cause tailpipe emissions to exceed certain limits. In this paper, the possible sensor faults are reviewed, and a non-intrusive diagnostics monitor is proposed to detect, identify and estimate the magnitude of the fault present. This paper extends the approach in [4] where technical details are emphasized and algorithm improvements are discussed.
2017-03-28
Technical Paper
2017-01-1640
Peng Liu, Liyun Fan, Wenbo Peng, Xiuzhen Ma, Enzhe Song
Abstract A novel high-speed electromagnetic actuator for electronic fuel injection system (EFIS) of diesel engine is proposed in this paper. By using a permanent magnet and an annular flange, the design of the novel actuator aims to overcome the inherent drawbacks of the conventional solenoid electromagnetic actuator, such as high power consumption and so on. A method of multi-objective optimization combined with response surface methodology and Genetic Algorithm (GA) is employed to obtain the optimal design of the novel actuator. First, combined with design of experiments and finite element analysis, the second order polynomial response surface models (SOPRSM) of electromagnetic forces are produced by the least square principle. Second, the complete multi-objective optimization mathematical model (MOMM) of the novel actuator based on SOPRSM is built, aiming to maximize the net electromagnetic force on the armature and minimize the drive current.
2017-03-28
Journal Article
2017-01-1639
Gerard W. Malaczynski, Gregory Roth
Abstract Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Abstract Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
2017-03-28
Journal Article
2017-01-1634
Hui Sung Lee
Abstract When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
2017-03-28
Technical Paper
2017-01-1638
Felix Gow, Lifeng Guan, Jooil Park
Abstract Tire Pressure Monitoring System (TPMS) sensor measures air pressure and temperature in the tire and transmits tire information as wireless messages to TPMS central unit which consists of Radio Frequency (RF) receiver. TPMS central unit needs to determine the exact sensor locations (e.g. Front Left, Front Right, Rear Left or Rear Right) in order to correctly identify the location of the tire with pressure out of the desired range. The identified tire with abnormal pressure is highlighted on dash board in the car. Thus, determination of the location of a particular tire made automatically by the TPMS system itself or tire localization is required. TPMS tire localization is implemented currently in several methods. A new method is proposed in this paper. The proposed method uses at least two RF transceivers as repeaters. Each transceiver receives wireless messages (eg.
Viewing 1 to 30 of 3155