Display:

Results

Viewing 1 to 30 of 3052
2016-11-08
Technical Paper
2016-32-0082
Ramit Verma, Ramdas R Ugale
On two wheelers magneto generate either single or 3 phase AC power and regulator rectifier unit(RRU) do regulated rectification to charge the battery. In order to face the requirements of 2-wheeler engine with respect to upcoming stringent regulations like EFI, ABS, AHO in emerging markets like India; vehicles are demanding more electrical power from batteries. This demands higher power from magneto hence regulator rectifier unit(RRU). Higher output power forces challenges on regulator rectifier unit in terms of size, power dissipation management and reliability. In this paper how performance of RRU improved with MOSFET based regulator rectifier are discussed in comparison to silicon controller rectifier (SCR) design. The motivation of MOSFET design is described as well as the thermal behaviour and temperature coefficient performance of RRU with test result.
2016-11-08
Technical Paper
2016-32-0087
Satoshi Ichihashi
Motorcycle usage area keeps expanding in the world. Motorcycle filling with various fuels in all countries and regions has to compliance with emissions and fuel consumption regulations as UN-GTR No.2 (WMTC). In general, motorcycle engine has large bore diameter and high compression ratio due to demands of high performance. Poor fuel quality may cause damage to engine mainly by knocking. Knock control systems performing high-frequency vibration detection strategy like knock sensor, which are equipped on several sport-touring motorcycles, can not come to wide use for reasons of complex construct and cost. This research aims to develop a new concept of combustion control for common motorcycle as an instead.
2016-11-08
Technical Paper
2016-32-0083
Michael Zisser, Hans-Juergen Schacht, Reinhard Stelzl, Bernhard Schweighofer, Hannes Wegleiter, Stephan Schmidt, Jakob Trentini, Jan-Philipp Banzhaf, Tim Gegg
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which even the simplest engine setup provides, is some form of the crankshaft speed since it is essentially for the functionality of the engine.
2016-11-08
Technical Paper
2016-32-0084
Shinichi Okunishi, Ken Ogawa
Accurate measurement of air volume is one of the large problems in LPL-EGR system. Measurement of air is difficult, because the intake volume of LPL-EGR system from the EGR valve to combustion chamber is much larger than HPL-EGR. Equally, it is difficulties to measure the correct LPL-EGR rate. By a conventional method, the best ignition timing control is difficult. The measurement of the LPL-EGR rate by using intake O2 sensor has been developed. Around 0% of LPL-EGR rate, this technique is poor accuracy.There is not a use except the LPL-EGR rate measurement. We thought that it was preferable for application of the engine control to use a wide sensor. About the ignition timing control, MFB 50% feedback control is to enable optimum ignition timing control by using the cylinder pressure. We thought about engine control by using the cylinder pressure, and we examined the following application.
2016-11-08
Technical Paper
2016-32-0080
Christian Steinbrecher, Haris Hamedovic, Andreas Rupp, Thomas Wortmann
Engine management systems combined with fuel injectors allow a precise fuel metering for a robust combustion process. Stricter emission legislations increase the requirements for these port fuel injection systems (PFI), whereas the price is still the main driver in the emerging low cost 2-wheeler market. Therefore, a holistic mechatronic approach is developed by Bosch, which allows an improved fuel metering over life time and furthermore provides new possibilities for diagnosis without changing the injector itself. This example of an intelligent software solution provides the possibility to further improve the accuracy of the opening duration of an injector. By use of the information contained in the actuation voltage and current, the opening and closing times of the injector are derivable.
2016-11-08
Technical Paper
2016-32-0085
Giovanni Vichi, Michele Becciani, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari, Alessandro Bellissima, Go Asai
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. Unfortunately, the cost and the intrusiveness of the sensor and the harsh operating condition that limits its life-time, make it not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control. For turbocharger engine application, the direct connection between the thermo-dynamic and fluid-dynamic conditions at the engine cylinder exit and the turbocharger behavior suggests that its instantaneous speed could give useful information about the engine cycle.
2016-11-08
Technical Paper
2016-32-0081
Giovanni Vichi, Michele Becciani, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari, Alessandro Bellissima, Go Asai
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. Unfortunately, the cost and the intrusiveness of the sensor and the harsh operating condition that limits its life-time, make it not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control. For turbocharger engine application, the direct connection between the thermo-dynamic and fluid-dynamic conditions at the engine cylinder exit and the turbocharger behavior suggests that its instantaneous speed could give useful information about the engine cycle.
2016-11-08
Technical Paper
2016-32-0088
Bastian Reineke, Jonathan Müller, Stefan Grodde, Wolfgang Fischer, Henning Heikes
Alternative engine speed sensing using the electric signals of the alternator In the low-cost segment for 2-Wheelers legislative, economic and ecological considerations necessitate a reduction of the emissions and further improvement in fuel consumption. To reach these targets the commonly used carburetors are being replaced by Engine Management Systems (EMS). One option to provide these systems for acceptable and attractive system costs is to save a sensor device and substitute its measure by an estimation value. In many motorcycles the rotor of the vehicle's alternator is rigidly attached to the crankshaft. Therefore, the voltage and current signals of the alternator contain information about the engine's speed, which can be retrieved by evaluating these electric signals. After further processing of this information inside the ECU the absolute crankshaft position can be obtained.
2016-11-08
Technical Paper
2016-32-0086
Tobias Gutjahr
Data-driven plant models are well established in engine base calibration to cope with the ever increasing complexity of today’s electronic control units (ECUs). The engine, drive train, or entire vehicle is replaced with a behavioral model learned from a provided training data set. The model is used for offline simulations and virtual calibration of ECU control parameters, but its application is often limited beyond this use case of offline calibration. Depending on the underlying regression algorithm, limiting factors could include expensive computational calculations and a high memory demand. However, development and testing of new control strategies would benefit from the ability to execute such high fidelity plant models directly in real-time environments. For instance, map-based ECU functions could be replaced or enhanced by more accurate behavioral models, with the implementation of virtual sensors or online monitoring functions.
2016-11-08
Technical Paper
2016-32-0052
Michael Schoenherr, Mathieu Grelaud, Ami Hirano
Blind Spot Detection system for two-wheelers Bosch’s side view assist is the world’s first rider assistance system for two-wheelers. This is a Blind Spot Detection system which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (car, truck or another motorbike) in the rider’s blind spot, the technology warns by an optical signal close to the mirror, so that the rider can for example avoid a collision when changing lanes. Side view assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for passenger cars. Different system solutions for passenger cars are already in serial production since several years.
2016-10-17
Technical Paper
2016-01-2310
Jeff Yeo, Jeremy Rochussen, Patrick Kirchen
As global energy demands continue to be met with ever evolving and stricter emissions requirements, Natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICE). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various emissions and apparent heat release rate (AHRR) trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area.
2016-09-27
Journal Article
2016-01-8104
Ryo Yamaguchi, Hiromichi Nozaki
In this study, we devised the steering assistance control that feedback of the external information from the laser sensor. We have created the emergency avoidance assistance control program by the obstacle detection in the first one, and the cornering assistance control program by the white line detection to second. Improvement in safety by these driving support can be expected. The effect of the created program was to understand by the driving simulator. In addition, we understand the synergistic effect of these steering assist program and chassis control (camber angle control, derivative steering assistance control). In the emergency avoidance assist by the obstacle detection, it made it possible to also be avoided for adding the handle operation at an early stage by the steering assistance in situations where manual operation collide by too late an obstacle avoidance handle operation.
2016-09-20
Technical Paper
2016-01-2004
M. Parvez Alam, Dinesh Manoharan
In this paper we discuss about the design and development of an “Autonomous Amphibious Unmanned Aerial Vehicle (AAUAV)” that can fly autonomously to the polluted water areas where human accessibility is formidable to test the water quality. The AAUAV system is an integrated multi-copter with tilt rotor capability to facilitate easy landing, navigation and maneuver on water. A 3D CAD model has been designed and analyzed. A specific propulsion system has been devised and lab tested. A proof of concept model has been made and tested in the field with its instruments to ascertain its technical/ operational feasibility. This system can also be tailored to collect and store the water samples from the polluted sites for further comprehensive research at the laboratory. AAUAV system is the novel solution to the polluted environment through a complete integrated system. This will be an effective alternative for the conventional water sampling techniques.
2016-09-20
Technical Paper
2016-01-2050
Martin Espinosa Sanchez, Mario Pérez Millás
The effect of air pockets in capillaries in terms of pressure variations is investigated experimentally. Pressure sensors in aircraft are often installed separated of the pipes and connected with capillaries to minimize ignition sources within fuel tanks. Trapped air within these capillaries might distort the measurement. These effects are characterized in this paper. Extensive tests with different capillary configurations, trapped air volumes and pressure transients are studied. Data obtained show that the main effect of trapped air during pressure transients is delaying the pressure response against its excitation, causing local pressure oscillations around its source value until the pressure is equal in both places again. These oscillations can turn into high pressure peaks under critical conditions. Greater amounts of air cause grater delays and vice versa.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Technical Paper
2016-01-1994
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation.
2016-09-20
Technical Paper
2016-01-1997
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract The aircraft electromechanical actuator (EMA) cooling fan is a critical component because an EMA failure caused by overheating could lead to a catastrophic failure in aircraft. Fault tree analysis (FTA) is used to access the failure probability of EMA fans with the goal of improving their mean time to failure (MTTF) from ∼O(5×104) to ∼ O(2.5×109) hours without incurring heavy weight penalty and high cost. The dual-winding and dual-bearing approaches are analyzed and a contra rotating dual-fan design is proposed. Fan motors are assumed to be brushless direct current (BLDC) motors. To have a full understanding of fan reliability, all possible failure mechanisms and failure modes are taken into account.
2016-09-20
Technical Paper
2016-01-2061
Andrew S. Babel, Parag Kshirsagar, Suman Dwari
Abstract In aerospace actuator applications electric machines are required to produce large static and dynamic torque while being constrained with stringent weight and volume restrictions. Among various types of electrical machines, Permanent Magnet (PM) Machines with strong rare earth magnets offer the highest torque and power density with low rotor inertia. This paper presents the design and study of three high-density PM machine topologies from the perspective of aerospace actuator applications. The machine topologies are compared with three key metrics for the same current density: torque per unit mass, torque per unit squared rotational inertia, and torque per unit volume. Such thorough comparison of these three candidates PM machine topologies for aerospace actuator application is not reported in available publications. Key requirements of specific actuation applications, such as torque density and active length, are taken into account for the design.
2016-09-14
Technical Paper
2016-01-1894
Siyu Chen, Libo Huang, Jie Bai, Haitao Jiang, Liang Chang
Abstract Intelligent vehicles can improve traffic safety and reduce damage caused by traffic accidents. Environmental perception system is the core of the intelligent vehicle which detects vehicles and pedestrians around the ego host-vehicle by using vehicle environmental perception sensors. Environmental perception system with the multi-sensor information fusion algorithm can utilize the advantages of each environmental perception sensor and detects targets with higher detection probability and precision. Most of the published papers are based on the sensor level fusion architecture which is not stable and robust in detecting target. This paper presents a multi-sensor fusion algorithm with central level architecture, which can improve the target detection probability compare to these with the sensor level fusion architecture.
2016-09-14
Technical Paper
2016-01-1900
Yafei Wang, Hiroshi Fujimoto, Yoichi Hori
Abstract Vehicle lateral states such as lateral distance at a preview point and heading angle are indispensable for lane keeping control systems, and such states are normally estimated by fusing signals from an onboard vision system and inertial sensors. However, the sampling rates and measurement delays are different between the two kinds of sensing devices. Most of the conventional methods simply neglect measurement delay and reduce sampling rate of the estimator to adapt to the slow sensors/devices. However, the estimation accuracy is deteriorated, especially considering the delay of visual signals may not be constant. In case of electric vehicles, the actuators for steering and traction are motors that have high control frequency. Therefore, the frequency of vehicle state feedback may not match the control frequency if the estimator is infrequently updated.
2016-09-14
Technical Paper
2016-01-1901
Zhenyi Liu, Weiwen Deng, Yaxin Li, Lijun Jiang, Xin Li, Ying Wang
Abstract Environmental sensing and perception is one of the key technologies on intelligent driving or autonomous vehicles. As a complementary part to current radar and lidar sensors, ultrasonic sensor has become more and more popular due to its high value to the cost. Different from other sensors mainly based on propagation of electromagnetic wave, ultrasonic sensor possesses some unique features and physical characteristics that bring many merits to autonomous vehicle research, like transparent obstacles and highly reflective surfaces detection. Its low-cost property can further bring down hardware cost to foster widespread use of intelligent driving or autonomous vehicles. To accelerate the development of autonomous vehicle, this paper proposes a high fidelity ultrasonic sensor model based on its physical characteristics, including obstacle detection, distance measurement and signal attenuation.
2016-09-14
Technical Paper
2016-01-1907
Yaxin Li, Ying Wang, Weiwen Deng, Xin Li, Zhenyi liu, Lijun Jiang
Abstract LiDAR sensors have played more and more important role on Intelligent and Connected Vehicles (ICV) and Advanced Driver Assistance Systems (ADAS) .However, the development and testing of LiDAR sensors under real driving environment for ADAS applications are greatly limited by various factors, and often are impossible due to safety concerns. This paper proposed a novel functional LiDAR model under virtual driving environment to support development of LiDAR-based ADAS applications under early stage. Unlike traditional approaches on LiDAR sensor modeling, the proposed method includes both geometrical modeling approach and physical modeling approach. While geometric model mainly produces ideal scanning results based on computer graphics, the physical model further brings physical influences on top of the geometric model. The range detection is derived and optimized based on its physical detection and measurement mechanism.
2016-08-17
WIP Standard
ARP4553B
This SAE Aerospace Recommended Practice (ARP) is intended to provide design and qualification requirements for self-displacing hydraulic accumulators.

These requirements are intended to be included in the Producrement Specification for the accumulator. Those requirements identified by the use of "shall" are considered to be essential requirements; those requirements identified by the use of "should" are considered to be optional requirements for inclusion in the Specificaiton at the discretion of the Purchaser.

In addition, test methods for production acceptance and qualification purposes are provided.

The accumulator is intended for use in military aerospace hydraulic systems with rated pressures of up to 8000 psi (55,158 kPa) and of the following types as specified in SAE AS 5440: Type I: -65 to +160 °F (-54 to +71 °C) fluid temperature; Type II: -65 to +275 °F (-54 to +135 °C) fluid temperature.

2016-08-12
Standard
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
2016-08-05
Magazine
Clearing the air Sensors, diagnostics and controls advance to help trap emissions. Bringing the heat on cooling technologies Electronic controls, variable-speed fans cool engines, heat aftertreatment systems. 3D printing machines can't be built fast enough In the additive manufacturing world, the costs of components are dropping, the technology is becoming more reliable and parts are fabricated faster, allowing industries beyond aerospace to adopt additive technologies, says Oak Ridge Lab's Ryan Dehoff.
2016-07-19
Standard
ARD6888
The purpose of this document is to specify the functional requirements for a miniature connector to be used for health monitoring purposes on aircraft (including harsh environments such as found in propulsion systems). It is actually a family of miniature connectors that is specified in this document for various uses (e.g., pin counts) and environments. This specification will be used by the SAE committee for connectors (AE-8C1) to study the feasibility of developing a dedicated connector standard.
2016-06-16
Standard
AS5391A
Accelerometers are transducers, or sensors, that convert acceleration into an electrical signal that can be used for airframe, drive, and propulsion system vibration monitoring and analysis within vehicle health and usage monitoring systems. This document defines interface requirements for accelerometers and associated interfacing electronics for use in a helicopter Health and Usage Monitoring System (HUMS). The purpose is to standardize the accelerometer-to-electronics interface with the intent of increasing interchangeability among HUMS sensors/systems and reducing the cost of HUMS accelerometers. Although this interface was specified with an internally amplified piezoelectric accelerometer in mind for Airframe and Drive Train accelerometers, this does not preclude the use of piezoelectric accelerometer with remote charge amplifier or any other sensor technology that meets the requirements given in this specification.
2016-06-15
Technical Paper
2016-01-1836
Sylvestre Lecuru, Pascal Bouvet, Jean-Louis Jouvray, Shanjin Wang
Abstract The recent use of electric motors for vehicle propulsion has stimulated the development of numerical methodologies to predict their noise and vibration behavior. These simulations generally use models based on an ideal electric motor. But sometimes acceleration and noise measurements on electric motors show unexpected harmonics that can generate acoustic issues. These harmonics are mainly due to the deviation of the manufactured parts from the nominal dimensions of the ideal machine. The rotor eccentricities are one of these deviations with an impact on acoustics of electric motors. Thus, the measurement of the rotor eccentricity becomes relevant to understand the phenomenon, quantify the deviation and then to use this data as an input in the numerical models. An innovative measurement method of rotor eccentricities using fiber optic displacement sensors is proposed.
2016-06-15
Journal Article
2016-01-1844
Jonathan Millitzer, Dirk Mayer, Roman Kraus, Matthias Schmidt
Abstract Current developments in the automotive industry such as downsizing, the use of cylinder deactivation and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise and vibration in vehicles. In the past few years, different configurations of actuators and sensors for the realization of an active control system have been investigated and evaluated experimentally. Active engine mounts, inertial mass actuators and structural integrated actuators can be used to reduce either structural vibrations or the interior noise level. As a result, a variety of different topology concepts for the realization of an active control system arises. These can be divided into an active vibration control scenario, the direct influence of the sound field with loudspeakers or the application of structural actuators for the reduction of the interior sound pressure.
Viewing 1 to 30 of 3052

Filter