Criteria

Display:

Results

Viewing 1 to 30 of 302
2017-11-05
Technical Paper
2017-32-0107
C. C. Chou, T. F. Kuo, T. H. Tsai, Y. H. Su, J. H. Lu, Y. Y. Ku
The urea-water-solution based selective catalyst reduction (SCR) system is one of the effective devices for reduction of NOx from diesel engines. In an effort to understand the various levels of oscillation observed in the NOx measurement downstream of a SCR in which the urea dosage is controlled by a crankshaft-link pump, a zero-dimensional dynamic SCR model is developed in this paper based on conservation of mass. The model contains three states including the concentrations of NOx and ammonia in the SCR and the surface coverage rate of the catalyst. The temperature-dependent reactions considered in the model include the adsorption, desorption and oxidation of ammonia and the NOx reduction with the reaction constants provided by the catalyst company. The dynamic SCR model is validated both at steady state and during transient under various engine operating conditions and urea dosing rates.
2017-10-08
Technical Paper
2017-01-2376
Nic Van Vuuren, Phil Armitage
Abstract Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of the formation of near-nozzle deposits that have been observed on existing underfloor SCR systems. The current work presents in-situ time lapse imaging of an underfloor mounted AUS-32 exhaust-mounted urea dosing unit. The operating conditions under examination are representative of low-load low speed urban driving interspersed with high temperature exposures typical of periodic DPF regeneration.
2017-10-08
Technical Paper
2017-01-2364
Jiaqiang Li, Yunshan Ge, Chao He, Jianwei Tan, Zihang Peng, Zidi Li, Wei Chen, Shijie Wang
Abstract Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
2017-10-08
Technical Paper
2017-01-2368
Wenji Song, Weiyong Tang, Bob Chen
Abstract The 4JB1 diesel engine originated from Isuzu has large share in the China light duty truck market. However, the tightened NOx emission target enforced by NS-V legislation compared with NS-IV regulatory standard is very challenging for this engine platform which originally adopted the DOC+POC catalyst layout. Furthermore, combustion characterization of this type engine leads to high soluble organic fraction (SOF) content in engine out particulates, which requires the catalysts in the exhaust after-treatment system (ATS) to deliver high SOF conversion efficiency in order to meet the regulation limit for particulate matters (PM). In this paper, an innovative exhaust catalyst layout with DOC+V-SCR is introduced. The front DOC is specially formulated with optimized PGM (Platinum Group Metal) loading which ensures effective SOF oxidation while keeping sulfuric acid and sulfate generation minimal.
2017-10-08
Technical Paper
2017-01-2383
Guoyang Wang, Jun Zhang, Bo Yang, Chuandong Li, Shi-Jin Shuai, Shi Yin, Meng Jian
Abstract Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
2017-10-08
Technical Paper
2017-01-2387
Yonge Wu, Xingyu Liang, Ge-Qun Shu, Boxi Shen, Yuesen Wang, Xikai Liu, Zhijun Li
Abstract Currently, selective catalytic reduction (SCR) is one of the main after-treatment systems to control diesel engine NOx emission. But the SCR system is bulky, considering the limited installation space. Therefore, the design of SCR system with the compact structure and reliable performance is one of the essential topics. In this study, the structure parameters, such as catalyst cross-sectional area, catalyst length, substrate wall thickness, coating thickness, channels per square inch (CPSI) of substrate, are taken into consideration to study their effects on the SCR performance and narrow the scope of various structural parameters for the following optimization study. Then, the structural parameters of the SCR reactor are optimized by considering the coupling relationship among these structural parameters by using the Response Surface Methodology (RSM) at high load of diesel engine.
2017-10-08
Journal Article
2017-01-2386
Naoki Ohya, Kohei Hiyama, Kotaro Tanaka, Mitsuru Konno, Atsuko Tomita, Takeshi Miki, Yutaka Tai
Abstract Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
2017-10-08
Journal Article
2017-01-2370
Matthieu Lecompte, Jerome Obiols, Jerome Cherel, Stephane Raux
Abstract Diesel Exhaust Fluid (DEF) like Adblue® is a urea/water solution injected upstream from the SCR catalyst. Urea decomposes into ammonia (NH3) which acts as reducing agent in the de-NOx reaction process. However, incomplete decomposition of urea can lead to unwanted deposits formation, thereby resulting into backpressure increase, loss of NOx reduction efficiency, and durability issues. The phenomenon is aggravated at low temperatures and can lead to restriction or stop of DEF injection below certain exhaust temperatures. This paper focuses on the influence of the additivation of DEF on deposits formation in a passenger car close-coupled SCR on filter Diesel exhaust line installed in a laboratory flow bench test. The behavior of two different additivated DEF was compared to Adblue® in terms of deposits formation on the mixer and SCRF canning at different temperatures comprised between 240°C and 165°C, and different air flows.
2017-10-08
Journal Article
2017-01-2375
Akihiro Niwa, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Abstract In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field.
2017-09-04
Technical Paper
2017-24-0121
Ivan Arsie, Giuseppe Cialeo, Federica D'Aniello, Cesare Pianese, Matteo De Cesare, Luigi Paiano
Abstract In the last decades, NOx emissions legislations for Diesel engines are becoming more stringent than ever before and the selective catalytic reduction (SCR) is considered as the most suitable technology to comply with the upcoming constraints. Model-based control strategies are promising to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-selective catalytic reduction. In this paper, a control oriented model of a Cu-zeolite urea-SCR system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. To make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational burden. Particularly, the model allows estimating the NH3 slip that is fundamental not only to minimize urea consumption but also to reduce this unregulated emission.
2017-09-04
Journal Article
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
2017-07-10
Technical Paper
2017-28-1927
Saurav Roy, Jyotirmoy Barman, Rizwan Khan
Abstract The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. Air less injection is one of effective, less complex way of injecting urea spray into the Exhaust stream. Further with air less injection it become more challenging in an engine platform of ~3 to 4L where Exhaust mass flow and temperature are relatively less. The droplet diameter and velocity distribution of De-Nox system has taken as input along with Engine raw emission data for a numerical model. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics. The numerical model was validated by the experimental results.
2017-07-10
Technical Paper
2017-28-1945
Jyotirmoy Barman, Himanshu Gambhir, Rizwan Khan
Abstract During the last few decades, concerns have grown on the negative effects that diesel particulate matter has on health. Because of this, particulate emissions were subjected to restrictions and various emission-reduction technologies were developed. It is ironic that some of these technologies led to reductions in the legislated total particulate mass while neglecting the number of particles. Focusing on the mass is not necessarily correct, because it might well be that not the mass but the number of particles and the characteristics of them (size, composition) have a higher impact on health. During the diesel engine combustion process, soot particles are produced which is very harmful for the atmosphere. Particulate matter is composed of much organic and inorganic composition which was analyzed after the optimization of SCR and EGR engine out.
2017-06-05
Technical Paper
2017-01-1875
Martino Pigozzi, Flavio Faccioli, Carlo Ubertino, Davide Allegro, Daniel Zeni
Abstract Within recent years, passenger comfort has become a main focus of the automotive industry. The topic is directly connected with acoustics, since sounds and noises have a major impact on the well-being of vehicle occupants. So-called “noise control” focuses on directly optimizing acoustic comfort by implementing innovative materials or geometries for automotive components and systems. One possibility to optimize the acoustics within a vehicle is connected to the phenomenon of sloshing in Selective Catalytic Reduction (SCR) tanks. Sloshing is a noise which is generated during normal driving situations by the motion of the Diesel Exhaust Fluid (DEF) in the tank. Until now, no procedure for measuring sloshing noise in SCR tanks has been defined, and neither a specific acoustic target which the SCR tanks need to fulfil.
2017-03-28
Technical Paper
2017-01-0943
Cory S. Hendrickson, Devesh Upadhyay, Michiel Van Nieuwstadt
Abstract Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction, control of NH3 slip or reduced reductant consumption, of having independently actuated injectors in front of each catalyst.
2017-03-28
Technical Paper
2017-01-0822
Jim Elkjær Bebe, Kasper Steen Andersen
Abstract The purpose of this work is to determine essential spray parameters for a specific nozzle to be integrated in computational fluid dynamics (CFD) simulations of selective catalytic reduction systems (SCR) based on the injection of urea water solution (UWS). As Dinex does not develop nozzles, but rather integrate nozzles from a variety of manufacturers, the spray data made available is of an inhomogeneous quality. This paper presents the results of a simple, partial validation and calibration of a CFD simulation performed with the commercial CFD code AVL FIRE 2014.2 using the Lagrangian discrete droplet method. The validation is based on a novel and low cost experimental setup, where the experimental method utilizes high-speed imaging to provide spray cone angle, axial spray penetration length and spray plume droplet density.
2017-03-28
Technical Paper
2017-01-0964
Jakob Heide, Mikael Karlsson, Mireia Altimira
Abstract Selective Catalytic Reduction (SCR) of NOx through injection of Urea-Water-Solution (UWS) into the hot exhaust gas stream is an effective and extensively used strategy in internal combustion engines. Even though actual SCR systems have 95-96% de-NOx efficiency over test cycles, real driving emissions of NOx are a challenge, proving that there is room for improvement. The efficiency of the NOx conversion is highly dependent on the size of UWS droplets and their spatial distribution. These factors are, in turn, mainly determined by the spray characteristics and its interaction with the exhaust gas flow. The main purpose of this study is to numerically investigate the sensitivity to the modelling framework of the evaporation and mixing of the spray upstream of the catalyst. The dynamics of discrete droplets is handled through the Lagrangian Particle Tracking framework, with models that account for droplet breakup and coalescence, turbulence effects, and water evaporation.
2017-03-28
Technical Paper
2017-01-0965
Lorenzo Nocivelli, Gianluca Montenegro, Angelo Onorati, Francesco Curto, Panayotis Dimopoulos Eggenschwiler, Yujun Liao, Alexander Vogel
Abstract The application of liquid aqueous Urea Solution (AUS) as reductant in SCR exhaust after-treatment systems is now a commonly accepted industry standard. Unfortunately, less acceptable are the associated difficulties caused by incomplete decomposition of the liquid, resulting in solid deposits which accumulate in the exhaust pipe downstream of the dosing components. The correct prediction of the spray pattern and, therefore, the spray impact on the walls is a key feature for the system optimization. A mechanical patternator, designed on the basis of CFD performance assessment, involving a Lagrangian representation of the dispersed liquid fully coupled with a 3D Eulerian description of the carrier phase, has been built and used to measure the spray mass distribution.
2017-03-28
Technical Paper
2017-01-0944
Ryuji Ando, Takashi Hihara, Yasuyuki Banno, Makoto Nagata, Tomoaki Ishitsuka, Nobuyuki Matsubayashi, Toshihisa Tomie
Abstract Modern diesel emission control systems often use Urea Selective Catalytic Reduction (Urea-SCR) for NOx control. One of the most active SCR catalysts is based on Cu-zeolite, specifically Cu-Chabazite (Cu-CHA), also known as Cu-SSZ-13. The Cu-SCR catalyst exhibits high NOx control performance and has a high thermal durability. However, its catalytic performance deteriorates upon long-term exposure to sulfur. This work describes our efforts to investigate the detailed mechanism of poisoning of the catalyst by sulfur, the optimum conditions required for de-sulfation, and the recovery of catalytic activity. Density functional theory (DFT) calculations were performed to locate the sulfur adsorption site within the Cu-zeolite structure. Analytical characterization of the sulfur-poisoned catalyst was performed using Extreme Ultraviolet Photoelectron Spectroscopy (EUPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).
2017-03-28
Journal Article
2017-01-0953
Jinyong Luo, Yadan Tang, Saurabh Joshi, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
2017-03-14
Journal Article
2016-01-9080
Yong-Yuan Ku, Jau-Huai Lu, Ko Wei Lin
Due to the rising price of crude oil, biofuel is being considered as a global alternative for fossil fuels to reduce the emission of greenhouse gases. Diesel blended with bio fuel is currently being widely adopted in many countries. The Taiwanese government has been enforcing the adoption of B2 since 2010. However, there have remained consistent concerns about engine durability related to the use of biofuel, especially regarding after-treatment systems. A selective catalytic reduction system (SCR) has been utilized recently to reduce NOX emission in order to meet the Euro IV and V emission standards. To evaluate the impact of biodiesel on the durability of engines equipped with the SCR system, a long-term testing program was organized for the purposes of this study. The results can be used as a reference for the development of marketing promotion strategies as well as government policies in Taiwan.
2017-03-14
Journal Article
2017-01-9275
Neng Zhu, Lin Lv, Chengwei Ye
Abstract In vehicles with urea-SCR system, normal operation of the urea-SCR system and engine will be influenced if there are deposits appearing on exhaust pipe wall. In this paper, a commercial vehicle is employed to study the influence factors of deposits through the vehicle road test. The results show that, urea injection rate, temperature and flow field have impacts on the formation of deposits. When decreasing the urea injection rate of calibration status by 20%, the deposit yield would reduce by 32%. If the ambient temperature decreased from 36 °C to 26 °C, the deposit yield would increase by 95%. After optimizing the exhaust pipe downstream of the urea injector by removing the step surface, only a few flow marks of urea droplets are observed on the pipe wall, and no lumps of deposits existing.
2017-01-10
Technical Paper
2017-26-0118
Satoshi Sumiya, David Bergeal, Kenan Sager
Abstract The Indian government has announced that India will skip BS V legislation and move to BS VI from 2020. In order to meet this NOx emission standard, most vehicles will need to adopt either NOx Storage Catalyst (NSC) or Selective Catalytic Reduction (SCR). It is shown that these two devices have different NOx reduction temperature windows and different sulfur tolerance. In the LDD application, it is highly important to deal with NOx in the low temperature region directly after a cold start. NSC works in this region with better performance than SCR, but its sulfur tolerance is weaker than SCR. To improve the weakness in low temperature NOx control on SCR, SCRF® which is SCR coated Diesel Particulate Filter (DPF) was developed and it demonstrated an advantage in light-off performance, due to the advantage in temperature conditions, by minimizing heat loss upstream of the SCR device.
2017-01-10
Technical Paper
2017-26-0043
Peter Heuser, Stefano Ghetti, Devising Rathod, Sebastian Petri, Sascha Schoenfeld
Abstract The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
2017-01-10
Technical Paper
2017-26-0132
Abhilash Jain, Jyotirmoy Barman, Kumar Patchappalam, Srikanth Gedela
Abstract Selective Catalytic Reduction has established itself to significantly reduce NOx emissions from diesel engines. Typically, in this technology, aqueous urea solution is injected into hot exhaust stream which chemically decomposes to form ammonia and then reacts with NOx to form safe byproducts as H2O and N2 over the catalyst surface. However, incomplete thermal decomposition of urea not only reduces the NOx conversion efficiency and increases the ammonia slip, but also leads to the formation of solid crystals that adversely affect the performance of the system by increasing the back pressure and lowering the overall fuel economy. The present study discusses about the main reasons that lead to crystal formation in a vanadium based SCR system on a six cylinder 5.6l diesel engine and also design considerations of decomposition tube that affect the formation of crystals and ways to mitigate them.
2017-01-10
Journal Article
2017-26-0113
Azael J. Capetillo, Fernando Ibarra, Dominik Stepniewski, Jo Vankan
Abstract Selective catalytic reduction (SCR) systems have become the preferred technology to deal with NOx emissions in Diesel engines. Their efficiency is highly reliant, among other factors, on the uniformity of distribution - known as Uniformity Index (UI) - of NH3 which is injected into the system through a urea-water solution (UWS). SCR system make use of a mixer component designed to achieve the desired UI levels. However, the great variety of exhaust systems, makes it impossible to employ a universal solution. Therefore, each SCR system requires of a tailor made mixer, capable of achieving the required UI, while preventing urea crystallisation and minimising pressure drops. Computer fluid dynamics (CFD) tools together with optimisation techniques based on the design of experiments (DoE) can be used to obtain the appropriate mixer design.
2017-01-10
Journal Article
2017-26-0143
Saroj Pradhan, Arvind Thiruvengadam, Pragalath Thiruvengadam, Berk Demirgok, Marc Besch, Daniel Carder, Bharadwaj Sathiamoorthy
Abstract Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
2017-01-10
Technical Paper
2017-26-0133
Ashok Kumar, Junhui Li, Jinyong Luo, Saurabh Joshi, Aleksey Yezerets, Krishna Kamasamudram, Niklas Schmidt, Khyati Pandya, Prachetas Kale, Thangaraj Mathuraiveeran
Abstract Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
2017-01-10
Journal Article
2017-26-0142
Zahra Nazarpoor, Steve Golden, Ru-Fen Liu
Abstract Stricter regulatory standards are continuously adopted worldwide to control heavy duty emissions, and at the same time, fuel economy requirements have significantly lowered exhaust temperatures. The net result is a significant increase in Precious Group Metal (PGM) usage with current Diesel Oxidation Catalyst (DOC) technology. Therefore, the design and development of advanced DOC with ultra-low PGM to achieve highly beneficial emission performance improvement is necessary. The advanced DOC is synergized PGM (SPGM) with Mixed Metal Oxide (MMO). The presence of MMO in SPGM is responsible for NO oxidation to NO2 which is critical for the passive regeneration of the downstream filter and SCR function. This paper outlines the development of MMO for application in modern DOCs and addresses some specific challenges underlying this application.
2016-10-17
Technical Paper
2016-01-2320
Tsuyoshi Asako, Ryuji Kai, Tetsuo Toyoshima, Claus Vogt, Shogo Hirose, Shiori Nakao
Abstract Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control nitrogen oxides (NOx) in diesel engine exhaust. The most commonly used catalyst for SCR in established markets is Cu-Zeolite (CuZ) due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize vanadia SCR. The operating temperature is typically maintained below 550°C to avoid vanadium sublimation due to active regeneration of the diesel particulate filter (DPF), or some OEMs may eliminate the DPF because they can achieve particulate matter (PM) standard with engine tuning. Further improvement of vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
Viewing 1 to 30 of 302

Filter