Display:

Results

Viewing 1 to 30 of 954
2017-09-19
WIP Standard
AS6960
Seat surrounding furniture (commonly known as shells) is intended to enhance passenger comfort and privacy. They can offer additional space for reclining the seat into a bed position, additional stowage, amenities, etc. Often some amenities are located on the furniture including the front row monument installed in front of the passenger seat. The units normally attach to the same aircraft floor tracks directly in front or behind passenger seat(s) or to the seat primary structure. The unit structures are not directly integrated into the main fuselage and do not offer main supports for aircraft integrity. This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for Seat Surrounding Furniture to be certified for installation in transport category airplanes.
2017-09-19
Technical Paper
2017-01-2052
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver PhD
Abstract Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropomorphic dummies such as those outlined in 14 CFR part 25. An example test involves decelerating one or more rows of seats and allowing a lap-belted dummy to impact components in front of it, which typically include the seatback and its integrated features. Examples of head contact surfaces include video monitors, a wide range of seat back materials, and airbags. The HIC, and other injury measures such as Nij, can be calculated during such impacts. A minimum test pulse, with minimum allowable acceleration vs time boundaries, is defined as part of the regulations for a frontal impact. In this study the effects of variations in decelerations that meet the requirements are considered.
2017-09-19
Technical Paper
2017-01-2054
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver
Abstract Aircraft seating systems are evaluated utilizing a variety of impact conditions and select injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropomorphic test devices such as those outlined in 14 CFR part 25. An example test involves decelerating one or more rows of seats and allowing a lap-belted ATD to engage components in front of it, which typically include the seatback and its integrated features. Examples of head contact surfaces include video monitors, various plastic and composite fascia, and a wide range of seat back materials. The HIC, and other injury measures such as Nij, can be calculated during such impacts. It has been shown in other safety applications that the friction between a headform and contact surface can affect the test results.
2017-09-19
Technical Paper
2017-01-2113
Michael Schultz
Abstract Passenger boarding is always part of the critical path of the aircraft turnaround: both efficient boarding and online prediction of the boarding progress are essential for a reliable turnaround progress. However, the boarding progress is mainly controlled by the passenger behavior. A fundamental scientific approach for aircraft boarding enables the consideration of individual passenger behaviors and operational constraints in order to develop a sustainable concept for enabling a prediction of the boarding progress. A reliable microscopic simulation approach is used to model the passenger behavior, where the individual movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. The simulation covers a broad range of behaviors and boarding strategies as well as the integration of new technologies and procedures.
CURRENT
2017-08-08
Standard
J1454_201708
This SAE Standard describes a laboratory test procedure for comparatively evaluating the durability and fatigue life qualities of a complete seat cushion by submitting the seating surface of the cushion to repetitive compressive and rotational loading with a simulated human buttocks.
2017-08-03
WIP Standard
J899
This SAE Standard provides seat dimensions and adjustments for the design of operator's seat.
2017-07-10
Technical Paper
2017-28-1923
Satish Mudavath, Ganesh Dharmar, Shyam Somani
Abstract Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
CURRENT
2017-06-28
Standard
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Abstract Truck and construction seats offer a number of different challenges compared to automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to a minimum frequency of 1 Hz was employed. Slowly swept sine excitation was used to visualize the seat mode shapes and identify nonlinearities at low frequencies. A sample set of seat BSR sounds are described in terms of time and frequency characteristics, then analyzed using sound quality metrics.
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Abstract Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
2017-06-05
Technical Paper
2017-01-1826
Sagar Deshmukh, Sandip Hazra
Abstract Engine mounting system maintains the position of powertrain in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from powertrain and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between hydromount and switchable hydromount during idle and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall powertrain performance and NVH attribute balancing through switchable mount technology.
CURRENT
2017-04-06
Standard
J3059_201704
This SAE Information Report describes the testing and reporting procedures that may be used to evaluate and document the excursion of a worker or civilian when transported in a seated and restrained position in the patient compartment of a ground ambulance when exposed to a front, side, or rear impact. Its purpose is to provide seating and occupant restraint manufacturers, ambulance builders, and end-users with testing procedures and documentation methods needed to identify head travel paths in crash loading events. This is a component level test. The seating system is tested in free space to measure maximum head travel paths. The purpose is not to identify stay out zones. Rather, the goal is to provide ambulance manufacturers with the data needed to design safer and functionally sound workstations for Emergency Medical Service workers so that workers are better able to safely perform patient care tasks in a moving ambulance.
2017-03-28
Technical Paper
2017-01-1741
Hyerin Choi, JunHo Song, Jae kwang Lee, Jaeyong Ko
Abstract Recently, it is one of the major problems in the automotive industry that grating is occurred form the place that more than two different materials combined. It is the most severe case that the noise generates between automobile seats and other relative parts (or within seat parts). The purpose of this research verifies and suggests the way to reduce squeak noise between two different parts through the stick-slip test which is regulated by VDA. The two materials - the seat trim cover and the plastic - were selected as major factors. We conducted the test with two different types of seat trim cover (authentic and artificial leather) and plastics (PP and ABS) with 4 levels of embossing size (0 to 3, level ‘0’ is non-embossing. Level 1 is the biggest embossing and it goes through smaller. Level 3 is the smallest embossing size). Test results were reported with 1 to 10 Risk Priority Number (RPN) which was proposed by VDA (Verband der Automotilindustrie).
2017-03-28
Technical Paper
2017-01-1388
S. M. Akbar Berry, Michael Kolich, Johnathan Line, Waguih ElMaraghy
Abstract Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
2017-03-28
Technical Paper
2017-01-0491
Hyerin Choi, Jaeyong Ko, JunHo Song, SeungKeon Woo
Abstract Recently, it is one of a major problems in automotive industry that wrinkles on seat interior occur at detaching between seat covering and padding foam. The purpose of this research is the way to improve heat resistance and adhesion using polyurethane reactive (PUR) of thermosetting plastic material. We compose PUR that makes thin film and non-tacky characteristic on padding foam. We find optimum situation (method and amount) for leather and padding foam. Viscosity and melting temperature are adjusted to coat with amount. 25~30g/m2 are suitable on padding foam unlike traditional method to coat leather above 100g/ m2. We also verified performances of PUR lamination compared to others. As result, peel strength is strongest at 15.4N/30mm. Heat resistance is also excellent with various padding foams. Furthermore we advance an additional jig to match leather and padding foam by low tacky characteristic of PUR. This jig can increase productivity in seat manufacturing process.
2017-03-28
Technical Paper
2017-01-0497
Byoung-Keon Daniel Park, Matthew P. Reed
Abstract Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
2017-03-28
Technical Paper
2017-01-0492
Mahendra Beera, Dinesh Pahuja, Arpit Kapila, Rajat Handa, Sandeep Raina
Abstract Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
2017-03-28
Technical Paper
2017-01-0493
Li Lu, Sean West, Stacey Raines, Jin Zhou, Paul Hoke, Yi Yang Tay
Abstract Traditionally, Knee Air Bag (KAB) is constructed of a woven nylon or polyester fabric. Recently, Ford developed an injection molded air bag system for the passenger side called Active Glove Box (AGB). This system integrates a plastic bladder welded between the glove box outer and inner doors. This new system is smaller and lighter, thus improving the roominess and other creature comforts inside the passenger cabin while providing equivalent restraint performance as traditional knee airbag system. This patented technology allows positioning of airbags in new locations within the vehicle, thus giving more freedom to designers. The first application of this technology was standard equipment on the 2015 Ford Mustang. Given that this technology is first in the industry, it was a challenge to design, test and evaluate the performance of the system as there is no benchmark to compare this technology. A CAE driven design methodology was chosen to overcome this challenge.
2017-03-28
Technical Paper
2017-01-0406
Jindong Ren, Xiaoming Du, Tao Liu, Honghao Liu, Meng Hua, Qun Liu
Abstract This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
2017-03-28
Technical Paper
2017-01-1390
Monica Lynn Haumann Jones, Jangwoon Park, Sheila Ebert-Hamilton, K. Han Kim, Matthew P. Reed
Abstract Seat fit is characterized by the spatial relationship between the seat and the vehicle occupant’s body. Seat surface pressure distribution is one of the best available quantitative measures of this relationship. However, the relationships between sitter attributes, pressure, and seat fit have not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the occupant’s body. A laboratory study was conducted using 12 production driver seats from passenger vehicles and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Relevant anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 (2008) were acquired for each test seat.
2017-03-28
Technical Paper
2017-01-1389
Ankush Kamra, Sandeep Raina, Pankaj Maheshwari, Abhishek Agarwal, Prasad Latkar
Abstract Automotive seating is designed by considering safety, comfort and aesthetics for the occupants. Seating comfort is one of the important parameters for the occupant for enhancing the overall experience in a vehicle. Seating comfort is categorized as static (or showroom) comfort and dynamic comfort. The requirements for achieving static and dynamic comfort can sometimes differ and may require design parameters such as PU hardness to be set in opposite directions. This paper presents a case wherein a base seat with good dynamic comfort is taken and an analysis is done to improve upon the static comfort, without compromising on the dynamic comfort. The study focuses on improving the initial comfort by considering various options for seating upholstery.
2017-03-28
Technical Paper
2017-01-1392
Abhilash CHOUBEY, RAJESH PAL, Kotanageswararao Puli, Pankaj Maheshwari, Sandeep Raina
Abstract The seating system is an inseparable part of any automobile. Its main function is not only to provide a space to the user for driving but also to provide support, comfort and help to ergonomically access the various features and necessary operations of the vehicle. For comfort and accessibility, seats are provided with various mechanisms for adjustments in different directions. Typical mechanisms used for seating adjustment include seatback recliners, lifters (height adjusters), longitudinal adjusters, lumber support, rear seat folding mechanism etc. These mechanisms can be power operated or manual based on vehicle/market requirements. For manual mechanisms, the occupant adjusts the position of seat by operating the mechanism with his/her hand. Often comfort to the occupant during operation is limited to the operating effort of the mechanism. However, as will be shown through this study, operating effort is only one of the parameters which provide overall comfort feeling.
2017-03-28
Technical Paper
2017-01-1395
Se Jin Park, Murali Subramaniyam, Seunghee Hong, Damee Kim, Tae Hyun Kim, Dong Woo Cho, Bum Il Shim
Abstract Seat cushions are considered as one of the important factors influence the seating comfort. In the automotive seat cushions, flexible polyurethane foams have been widely used due to the cushioning performance. Automotive seat designers are paying more attention to the improvement of seat cushion properties. This study introduces an automotive seat that uses an air-mat in the seat cushion along with polyurethane foam. The air-mat can be adjusted with its internal air pressure. The objective of this paper is to examine air-mat seat pressure level on seating comfort. Vibration experiments have been performed on the BSR simulator with random vibration. Tri-axial accelerometers were used to measure vibration at the foot and hip. All measured vibration were about the vertical direction (z-axis). The whole-body vibration exposure parameters (weighted root-mean-square (RMS), vibration dose value (VDV), transmissibility (SEAT value)) were calculated per ISO 2631-1 standard.
2017-03-28
Technical Paper
2017-01-1304
Alejandro Rosas Vazquez, Fernando Paisano, Diego Santillan Gutierrez
Abstract For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
2017-03-28
Technical Paper
2017-01-1303
Nobuhisa Yasuda, Shinichi Nishizawa, Maiko Ikeda, Tadashi Sakai
Abstract The purpose of this study is to validate a reverse engineering based design method for automotive trunk lid torsion bars (TLTB) in order to determine a free, or unloaded, shape that meets a target closed shape as well as a specified torque. A TLTB is a trunk lid component that uses torsional restoring force to facilitate the lifting open of a trunk lid, as well as to maintain the open position. Bend points and torque of a TLTB at a closed trunk position are specified by a car maker. Conventionally, a TLTB supplier determines bend points of the free shape by rotating the given bend points from a closed position around a certain axis to satisfy the specified torque at the closed position. Bend points of a deformed TLTB shape in the closed position often do not match the target bend points given by a car maker when designed by the conventional method, which can potentially cause interference issues with surrounding components.
2017-03-28
Technical Paper
2017-01-1298
Kamlesh Yadav, Abhishek Sinha, Rajdeep Singh Khurana
Abstract Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
2017-03-28
Technical Paper
2017-01-1300
Raj Jayachandran, Bhimaraddi Alavandi, Matt Niesluchowski, Erika Low, Yafang Miao, Yi Zhang
Abstract An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
2017-03-28
Technical Paper
2017-01-1474
Raed E. El-Jawahri, Agnes Kim, Dean Jaradi, Rich Ruthinowski, Kevin Siasoco, Cortney Stancato, Para Weerappuli
Abstract Sled tests simulating full-frontal rigid barrier impact were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on point estimate basis.
2017-03-28
Technical Paper
2017-01-1391
Heather Bronczyk, Michael Kolich, Marie-Eve Cote
Abstract Load deflection testing is one type of test that can be used to understand the comfort performance of a complete trimmed automotive seat. This type of testing can be conducted on different areas of the seat and is most commonly used on the seatback, the seat cushion and the head restraint. Load deflection data can be correlated to a customer’s perception of the seat, providing valuable insight for the design and development team. There are several variables that influence the results obtained from this type of testing. These can include but are not limited to: seat structure design, suspension system, component properties, seat materials, seat geometry, and test set-up. Set-up of the seat for physical testing plays a critical role in the final results. This paper looks at the relationship of the load deflection data results on front driver vehicle seatbacks in a supported and unsupported test set-up condition.
2017-03-28
Technical Paper
2017-01-1308
Abhishek Softa, Anuj Shami, Rajdeep Singh Khurana
Abstract The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used.
Viewing 1 to 30 of 954

Filter