Criteria

Text:
Display:

Results

Viewing 1 to 30 of 926
2017-10-08
Technical Paper
2017-01-2330
Leonardo Israel Farfan-Cabrera, Ezequiel Gallardo, José Pérez-González
Abstract Flouroelastomers and silicone rubbers are commonly employed in static and dynamic seals for automotive applications. In order to prevent premature failures and leakages caused by swelling and/or changes in their mechanical properties, materials for seals are selected according to their compatibility with the environment and fluids involved in the engine operation. Thus, in particular, the use of new fuels and additives in automotive engines requires the assessment of compatibility with common sealing elastomers to prevent failures. Currently, Jatropha oil is being used as a renewable source of fuel in diesel engines for electricity production, transport or agricultural mechanization in various countries. It is used either as biodiesel or as straight vegetable oil (SVO) since it has good heating power and provide exhaust gas with almost no sulfur or aromatic polycyclic compounds. However, the compatibility of elastomers with this SVO has not been investigated yet.
2017-09-17
Journal Article
2017-01-2521
Stacey Scherer
Abstract Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
2017-09-17
Journal Article
2017-01-2527
Dejie Huang, Xu Zhou, Peiqing Qian, Chao Wen, Yu Liu
Abstract The seal structure and key parameters of wheel bearing were introduced. Research on sealing failure diagnosis, abrasive scratch analysis, residual interference, and abrasion reconstruction was carried out for a typical seal structure. Based on these methods of scientific failure analysis, eight causes of seal failure were summarized systematically, which were important for the guidance of seal design and failure analysis of wheel bearings.
2017-09-17
Journal Article
2017-01-2525
Seungpyo Lee, Mincheol Park
Abstract The primary functions of bearing seals are to prevent lubrication from escaping and foreign material from entering, the effectiveness of which is determined by the design of the seal lips. Bearings with low friction rotation are in great demand in the automotive market as a direct result of enforced vehicle fuel economy and reduced CO2 emissions regulations. Therefore, bearings with good sealing function and low friction rotation are required. This makes designing a seal challenging as the ideologies of high seal-ability and low friction rotation tend to be contradictory. Current estimations of bearing seal friction or rotational torque require significant time and cost through empirical methods of trial and error. Research into the estimation of bearing rotational torque through numerical analysis, based on finite element methods, is the focal point of this paper.
2017-06-05
Technical Paper
2017-01-1760
Weimin Thor, J. Stuart Bolton
Abstract Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
2017-03-28
Technical Paper
2017-01-0323
Rosa Radovanovic, Samuel J. Tomlinson
Abstract Press-in-place gasket stability is required to maintain consistent and predictive sealing compression in a sealing joint utilizing a housing groove and a mating component sealing surface. Without proper balance between height of the groove and height of the gasket, the sealing joint can be compromised. Hence, automotive engineers balance design variables with the desire to achieve long term sealability and gasket stability. The percentage of gasket out of groove was varied to study the interactions of this design control and the resultant deviation of gasket centerline to the groove centerline. Finally, an optimal percentage of gasket out of groove is recommended.
2017-03-28
Technical Paper
2017-01-1080
Yanan Wei, Shuai Yang, Xiuyong Shi, Jiaqi Li, Xuewen Lu
Abstract This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
2017-03-28
Technical Paper
2017-01-1091
Todd Brewer, Xingfu Chen
Abstract Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. There are three major failure modes for head gasket joint: fluid or gas leakage due to low sealing pressure, head gasket bead cracking due to high gap alternation and scrubbing/fretting due to pressure and temperature fluctuations causing lateral movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all three failure modes and the resulting design must consider all three major failure modes to provide acceptable performance.
2017-03-28
Technical Paper
2017-01-1240
Koki Matsushita
Abstract For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
2017-03-28
Journal Article
2017-01-1043
Yang Liu, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
2017-03-28
Journal Article
2017-01-1073
Robert Huber, Jan Clauberg
Abstract The object of this study is a new chain tensioner with two labyrinth seals. For the simulation of chain tensioners within the framework of multi-body dynamics, a physically orientated model to describe the fluid dynamics of the labyrinth seals is derived. The easiest way to describe labyrinth seals is to use maps obtained from measurements. As this is very time-consuming, methods of 1D and 2D fluid-mechanics are used in this work to model the labyrinth seals. The seals are characterized by physically motivated parameters e.g. coefficients of resistance or friction. As these parameters can be derived from geometric data, a very good forecast feasibility without experimental investigations is provided. For high accuracy simulations model parameters can be refined by experimental data. As many and highly complex parameters have to be identified, this refinement is very time-consuming and requires lots of experiments.
2017-03-28
Journal Article
2017-01-1047
Yang Liu, Yuwei Li, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
2017-01-10
Technical Paper
2017-26-0367
Prasad S. Warwandkar, Ashutosh Dubey, Sonu Paroche
Abstract Wheel end bearing is one of the critical components of the vehicle as it directly faces the road loads for harsh operating environment. Bearing being a precisely manufactured component and rotating at high speed, utmost care is required while assembling as well as during operation. In operating condition wheel end is directly exposed to outside environment making it prone to entry of contamination. This contamination if not prevented from entering into wheel end through proper sealing it would cause lubricant contamination and consequently bearing failure. Bearing replacement and overall wheel end service is time consuming activity reducing the turn out time of the vehicle. In wheel ends, one side is sealed with the help of seal while the other side is protected by cap and gasket. This cap-gasket interface is very critical from sealing perspective and utmost importance needs to be taken while designing the same.
2016-10-17
Technical Paper
2016-01-2272
Carl Bennett, Jason Bell, Jeffrey Guevremont
Abstract Elastomer compatibility is an important property of lubricants. When seals degrade oil leakages may occur, which is a cause of concern for original equipment manufacturers (OEMs) because of warranty claims. Leakage is also a concern for environmental reasons. Most often, the mechanical properties and fitting of the oil seals is identified as the source of failure, but there are cases where the interaction between the lubricant and the seal material can be implicated. The performance of seal materials in tensile testing is a required method that must be passed in order to qualify lubricant additive packages. We conducted an extensive study of the interactions between these elastomeric materials and lubricant additive components, and their behavior over time. The physicochemical mechanisms that occur to cause seal failures will be discussed.
2016-09-27
Technical Paper
2016-01-8062
Jham Kunwar Tikoliya, Ram Krishna Kumar Singh, Ramesh Kumar, Suresh Kumar Kandreegula
Abstract The existing head cover is having external oil and blow by separation unit, which is not only costlier but also complex and leads to increase in overall height of engine which was difficult to integrate in new variants of vehicles. A new head cover has been designed with internal baffle type oil and blow by separation system to ensure efficient separation and proper packaging of the system in new variants. The new system has been finalized after 26 DOE’s of different wire mesh sizes and different baffle plate size and positions. The final system has two bowl shaped separation unit with wire mesh, two cup type oil separation passages and one baffle plate for separating blow by. The system works on condensation and gravity method. The blow by is guided through a well-defined passage integrated in aluminum cylinder head cover itself. The passage angle is maintained to ensure minimum oil flow with blow by.
2016-09-18
Journal Article
2016-01-1956
Robert G. Sutherlin, Douglas Reed
Abstract For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
2016-04-05
Technical Paper
2016-01-0513
Yohei Miki, Hisao Futamata, Masahiko Inoue, Masashi Takekoshi, Kohbun Yamada
Abstract Unexpected noise may occur around air intake manifold when the throttle valve is quickly opened. In order to solve this problem, mesh is often mounted into the air flow between the intake manifold and the throttle body. In this study the effect of mesh design on the noise reduction was investigated. Several designs of the mesh were tested with an actual automobile and the developed test equipment taking advantage of an intake manifold unit, and the noise attenuation was discussed with measuring the noise and observation of the mesh deformation. Based on those experiments, the mesh design for noise reduction was optimized. Furthermore integration of mesh and rubber gasket was examined. Finally, rubber mesh-gaskets which provide sealing and noise attenuation for air intake has been proposed in this study.
2016-04-05
Technical Paper
2016-01-1348
Kenichi Higuchi, Fumihiko Toyoda, Hirohito Terashima, Shinji Ikeda, Eitaku Nobuyama
Abstract 1 There are two design challenges of the flow path switching valve in a three-stage variable discharge oil pump. The first is to obtain the required discharge pressure characteristics and the other is to prevent hydraulic vibration. Therefore, we established technologies to determine the shape of the valve and the valve housing that resolve these two challenges. The technology to obtain the required discharge pressure characteristics solves equations that are statically true, such as the equations for the equilibrium of forces and hydraulic orifice. The hydraulic vibration control technology derives a differential equation that takes transient behavior, including oil elasticity and inertia, into account first. Then, the derived equations are converted to a transfer function that indicates the valve behavior according to the input of oil pressure changes. And then the stability criterion is applied to judge whether hydraulic vibration occurs or not.
2016-04-05
Technical Paper
2016-01-0496
Leonardo Farfan-Cabrera, Ezequiel A. Gallardo
Abstract Debris are progressively generated just after wear occurred by the interaction of various mechanical elements inside the engines, steering gear boxes, transmissions, differentials, etc. Besides, debris could interfere with the normal operation of such components generating even more damage in other parts due to three-body abrasion. Hence, dynamic seals are susceptible to interact with very fine debris accumulated in the working lubes. Recently, owing to many test advantages, the micro-scale abrasion test has been extensively used to reproduce three-body abrasion in hard materials, coatings, polymers, etc., however, it has not been before employed for the wear assessment of elastomeric materials. This paper presents an adaptation of the micro-scale test method to study three-body abrasive behavior of an elastomeric dynamic seal (samples extracted from an automotive commercial Acrylonitrile-butadiene NBR rotary seal) under lubricated conditions.
2016-04-05
Technical Paper
2016-01-1381
Jiaqi Li, Jimin Ni, Xiuyong Shi
Abstract Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
2016-04-05
Technical Paper
2016-01-1349
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract In the current scenario, the major thrust is to simulate the customer usage pattern and lab test using virtual simulation methods. Going ahead, prime importance will be to reduce the number of soft tool prototype for all tests which can be predicted in CAE. Automotive door slam test is significantly complex in terms of prediction through simulation. Current work focuses on simulating the slam event and deriving load histories at different mounting locations through dynamic analysis using LSDyna. These extracted load histories are applied to trimmed door Nastran model and modal transient analysis is performed to find the transient stress history. This approach has a significant advantage of less computation time and stress-convergence with Nastran for performing multiple design iterations compared to LSDyna. Good failure correlation is achieved with the test using this approach.
2016-04-05
Technical Paper
2016-01-1397
Charles Yuan, Erik Kane, Abid Rahman
Abstract New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE.
2015-09-01
Technical Paper
2015-01-2035
Mathieu Picard, Tian Tian, Takayuki Nishino
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
2015-04-14
Technical Paper
2015-01-1740
Kelsie S. Richmond, Stephen Henry, Russell Richmond, David Belton
Gasket materials are utilized for various different types of high temperature testing to prevent leaking at bolted joints. In particular, the automotive test services field uses flanged-gasket bolted exhaust joints to provide a convenient method for installation & removal of exhaust components like catalytic converters for aging, performance testing, etc. Recent improvements in the catalyst aging methods require flanged-gasket joints that can withstand exhaust temperatures as high as 1200°C. Gasket materials previously used in these applications like the graphite based gasket materials have exhibited physical breakdowns, severe leakage, and general thermal failures under these extreme temperatures. In order to prevent these leaks, metal-reinforced gasket materials in a number of configurations were introduced to these extreme temperature environments to evaluate their robustness to these temperatures.
2015-04-14
Technical Paper
2015-01-1743
Tanmay Santra, Vikas Kumar Agarwal
An inadequate sealing of the combustion chamber gasket interface may have severe consequences on both the performance & emission of an engine. In this investigation, both the distribution of the contact pressure on the gasket and the stresses of the cylinder head at different loading conditions are explored and improved by modifying the design. A single cylinder gasoline engine cylinder head assembly has been analyzed by means of an uncoupled FEM simulation to find the sealing pressure of the multi-layer steel (MLS) gasket, strength & deformation of the components involved. The thermal loads are computed separately from CFD simulations of cylinder head assembly. The cylinder head assembly consisting of head, blocks, liner, cam shaft holder, bolts, gaskets, valve guides & valve seats, is one of the most complicated sub-assembly of an IC engine.
2015-04-14
Technical Paper
2015-01-0596
Oliver Scholz, Nikolas Doerfler, Lars Seifert, Uwe Zöller
Abstract Polymer seals are used throughout the automobile for a variety of purposes, and the consequences of a failure of such a seal can range from annoying in case of an A/C component to catastrophic in the case of brake components. With the constantly increasing demands for these components regarding e.g. pressure, tighter tolerances or new refrigerants come more stringent requirements for ensuring surface properties according to the specification for the specific application. While automatic inspection systems are available for a variety of defects, the area of seal inspection is still dominated by manual labor, partly because handling of these small, inexpensive parts is difficult and partly because visual coverage of the entire sealing surface poses a problem. It is also difficult for a human inspector to objectively assess whether or not a surface defect is critical, especially given that inspection of each seal must be completed within a few seconds.
2015-01-14
Technical Paper
2015-26-0215
T Sukumar, Murugan Subramanian, Sathish Kumar Subramaniyan, Nandakumar Subramanian
Abstract Reliable sealing solutions are extremely important in commercial vehicle industry because sealing failures can cause vehicle breakdown, damage of equipment or even accident, incurring expenses that are substantially higher than the costs of just replacing the damaged seals. Consequently, new seal designs must be experimentally verified and validated before they can be implemented. In this study, Mooney - Rivlin hyper elastic material model is used to simulate the sealing behavior during dynamic conditions. The seal under study is a large diameter lip seal made of Neoprene® rubber (NBR) A finite element model to study the response of the seal under dynamic conditions was developed. The analysis took into account the mating parts dimensions and the lip seal parameters. Three designs were proposed and verified. The seal design is optimized using non-linear FEA and validated. Results include contact pressure, deflection and strain experienced by the seal during actuation.
2015-01-14
Technical Paper
2015-26-0029
Suresh Kumar Kandreegula, Umashanker Gupta, Swapnil Vyas
Abstract Proper sealing of an engine is very important parameter in an engine design. Even small amount of gas leakage from the engine can affect the overall performance of the engine during operation. There are two important factors in enhancing the efficiency of the sealing of the gasket are right tightening torque of bolts & gasket design. In this study, both the distribution of the contact pressure on the gasket, and the stresses of the cylinder head at different loading conditions, such as cold assembly, hot assembly, cold start, and hot firing, is simulated by commercial tool, based on the finite element method (FEM). The results shows that the efficiency of the sealing of the cylinder head gasket depends on the tightening torque of the hold-down bolts, without taking into consideration any thermal load resulting from the temperature distribution in the cylinder head.
2014-09-30
Technical Paper
2014-36-0116
Maurício C. Vituri, Ricardo M. Castro
Abstract Vehicular manual transmissions systems often use a vent or breather to allow pressure control inside the main structure. This pressure variation comes along with differences caused by working temperature range. However along with air flow these vents may occasionally allow oil passage noticed by vehicle owner as a transmission leakage event. The more sophisticated the more expensive is the venting device which may contain membranes, labyrinths, baffles and other solutions to avoid leakage. The purpose of this paper is to present a simplified solution to avoid transmission fluid leakage by combining a regular sealing device (fiber concept gasket) and a baffle to avoid oil splash to reach the venting device. The proposed concept took into consideration a quick implementation aspect, low financial impact and less complexity to the overall current system modifying an existing component by adding secondary function instead of creating additional components.
2014-04-01
Technical Paper
2014-01-0997
Norihiro Hamada, Kiyohiro Suzuki
Abstract ADC12 is one of the common aluminum alloys for automobiles because it has suitable for casting and machining. However, the corrosion resistance of ADC12 is insufficient in comparison with other aluminum alloys. The corrosion depends on chemical composition of aluminum and circumstance around aluminum. It was considered that a crevice such as a seal gap accelerates corrosion rate. Therefore, the corrosion at a sealing gap between ADC12 and rubber gasket was investigated. Salt water corrosion tests were carried out with an o-ring compressed between ADC12 plate and plastic plate. Corrosion depth and corrosion area at sealing surface were measured with a microscope. The corrosion depth at the sealing surface was deeper than that outside it. Since smooth surface of aluminum prevented the sealing surface from corrosion, it was considered that the narrow sealing gap enabled to decrease in the corrosion rate.
Viewing 1 to 30 of 926

Filter