Criteria

Text:
Topic:
Display:

Results

Viewing 241 to 270 of 15836
2014-04-01
Technical Paper
2014-01-0431
John D. Bullough
Abstract Present standards for vehicle forward lighting specify two headlamp beam patterns: a low beam when driving in the presence of other nearby vehicles, and a high beam when there is not a concern for producing glare to other drivers. Adaptive lighting technologies such as curve lighting systems with steerable headlamps may be related to increments in safety according to the Insurance Institute for Highway Safety, but isolating the effects of lighting is difficult. Recent analyses suggest that visibility improvements from adaptive curve lighting systems might reduce nighttime crashes along curves by 2%-3%. More advanced systems such as adaptive high-beam systems that reduce high-beam headlamp intensity toward oncoming drivers are not presently allowed in the U.S. The purpose of the present study is to analyze visual performance benefits and quantify potential safety benefits from adaptive high-beam headlamp systems. Before adaptive high-beam systems could be permitted on U.S. roadways, it is necessary to have data describing their potential for crash reductions.
2014-04-01
Technical Paper
2014-01-0426
Jeff D. Colwell
Abstract Results from a full-scale vehicle burn test involving a 1998 compact passenger car were used to evaluate vehicle fire dynamics and how burn patterns produced during the fire correlated with important characteristics of the fire, such as the area of origin. After the fire was initiated at the air filter in the engine compartment, the fire spread locally and, once the temperature near the origin reached about 750°C, the temperature at all but one location within the engine compartment began to increase. These temperatures continued to increase for the next 6 minutes and then a temperature gradient began to develop in the passenger compartment between the ceiling and the floor. About 5 minutes after the engine compartment became fully involved, the ceiling temperature reached about 590°C and flame spread within the passenger compartment increased. Over the next 4 minutes, the passenger compartment also became fully involved. The fire then spread to the trunk and the rear wheels before self-extinguishing.
2014-04-01
Technical Paper
2014-01-0429
Guanyu Zheng, Indrek Wichman, Andre Benard, Hongyu Wang, Xiaohui Li, Jie Gao
Abstract Flame spread over a melting thermally thick composite polymer is investigated in a channel flow above a condensed fuel. The condensed fuel consists of an isotropic (melted layer of) liquid near the heated surface and an anisotropic (not-yet-melted) solid surrounding it. The influence of the solid anisotropy is evaluated by changing the solid conductivity (ksx or ksy) in one particular direction (x in horizontal flame spread direction or y in vertical direction, see schematics in Figure 1) while keeping the other properties fixed. Note that the liquid conductivity kl has no isotropic behavior. Numerically, it is found that the flame spread rate decreases with either increasing ksx or ksy. The decrease with respect to ksy is less than for a comparable case described by the de Ris formula for an isotropic pure solid. The flame spread rate is more accurately determined by an analytical formula derived for spread across a melting solid fuel. Qualitatively, the liquid layer extent decreases with either increasing ksx or ksy due to the role played by the solid conduction as a heat loss mechanism in a thermally thick fuel.
2014-04-01
Technical Paper
2014-01-0436
Rainer Neumann
Abstract Since 2012, adaptive driving beam (ADB) was homologated first in the ECE world (ECE 123). The idea behind is a camera based lighting system, which enables the driver to achieve at night nearly high beam visibility without glaring oncoming or proceeding vehicles and road users. Once the presence of other vehicles is detected the headlamps change the light pattern and block the light where the oncoming or proceeding vehicles are located. Light sources are typically High Intensity Discharge (HID) bulbs, but today also first LED applications are visible. For SAE, the definition of the parameters and the requested regulation changes to allow such systems are in progress. The paper reports about an extensive study executed in Germany at TU Darmstadt to investigate not only the improvement in visibility for the driver with such systems, but also evaluate the disability and discomfort glare for other road users. The results are demonstrating clearly, that the existing ADB systems do not cause additional glare for the road users and also do not lead to an increased subjective discomfort glare rating.
2014-04-01
Technical Paper
2014-01-0438
Mitsuhiro Uchida, Yasushi Kita, Takako Minoda(Kimura), Ryuji Ueki, Shoko Kawanobe
Abstract LEDs offer great advantages such as low power consumption and compact size. In addition to the physical benefits, however, they also boast 1.2times the feeling of brightness compared with halogen bulbs, as shown in previous research, and the colors of LED sources have been shown to stand out better than other sources (halogen and HID) used for traffic signs, offering superior perceived Clarity and sharpness. As well as traffic signs, it is essential to be able to see pavement markings clearly when driving an automobile. In this study, tests were carried out on public roadways using automobiles installed with halogen, HID and LED-based headlamps. It was found that the LED sources were found to provide the clearest illumination of the white lines. White lines on an actual road surface were also illuminated with halogen, HID and LED lamps in order to compare the effects of these sources on the visibility of the white lines by static evaluation. The results indicate that the LED sources provided a greater improvement in the visibility of the white lines than the other (halogen and HID) sources.
2014-04-01
Technical Paper
2014-01-0423
Raúl Ochoterena, Maria Hjohlman, Michael Försth
Abstract Fires in the engine compartments of surface and underground non-rail heavy duty vehicles are still highly frequent. Statistics show that most of the reported fires commenced in the engine compartment and that these were not promptly detected by the drivers. Fires which were not detected rapidly, spread oftentimes beyond the firewall of the engine compartment having notorious economical and environmental repercussions; furthermore, endangering the safety of the occupants. Detecting fires in the engine compartments of heavy duty (HD) vehicles with inexpensive and simple automatic detection systems is in general challenging. High air flows and large amounts of suspended pollutants, together with the complicated geometry and wide range of surface temperatures typically occurring during the normal operation of the vehicle, complicate the reliable operation of almost all types of detectors. This work presents a theoretical study assessing the effectiveness of different detection systems in a simulated fire scenario.
2014-04-01
Technical Paper
2014-01-0688
Kambiz Jahani, Sajjad Beigmoradi
Abstract Adequate visibility through the automobile windscreen is a critical aspect of driving, most often at very low temperatures when ice tends to be formed on the windscreen. The geometry of the existing defroster system needs to be improved in the vehicles, with the main aim of substantial increase in air mass flow reaching the windscreen through defroster nozzles and appropriate velocity distribution over the windscreen, while respecting all packaging constraints. The reason of this study is to investigate the windscreen deicing behavior of a vehicle by means of Computational Fluid Dynamics (CFD) with the main concern of improving deicing process by design an appropriate defroster. Two different defrosters with completely different geometry are considered for this purpose. A detailed full interior model of an existing vehicle is created via CAE tools. A transient simulation is performed and results are extracted to show how a proper design of the defroster will lead to considerable improve in deicing process.
2014-04-01
Technical Paper
2014-01-0095
David Renfroe, Alex Roberts, Raphael Grzebieta, George Rechnitzer, J. Keith Simmons
Abstract This paper examines the directional handling characteristics of several vehicles in their original condition, then examines modifications to a few of these vehicles to determine if the handling characteristics can be made more forgiving of normal operators without sacrificing utility and without substantial increases in cost. These analyses of vehicles are made in the context of what normal operators are capable of performing with regards to steering response.
2014-04-01
Technical Paper
2014-01-0336
Payman Khani, Mehrdad S. Sharbaf
Abstract Vehicular Network is an emerging and developing technology to improve traffic management and safety issues, and enable a wide range of value-added services such as collision warning/avoidance. Many applications have been designed to provide safety and comfort for passengers. This technology is a prolific area for attackers who will attempt to challenge the network with their malicious or rational attacks. In this paper we elaborate what a vehicular network is, different kinds of communication in this field, main mechanism and related parts and how vehicular networks work then we introduce some of its applications. After primary familiarity with this system we investigate to different type of attacker, more important security issues, How to secure vehicular networks (security requirements and some tools and methods to achieve secure vehicular networks), difficulties and providing viable security solutions, and at the end briefly explanation of related standards.
2014-04-01
Technical Paper
2014-01-0340
Satoshi Otsuka, Tasuku Ishigooka, Yukihiko Oishi, Kazuyoshi Sasazawa
Abstract In-vehicle networks are generally used for computerized control and connecting information technology devices in cars. However, increasing connectivity also increases security risks. “Spoofing attacks”, in which an adversary infiltrates the controller area network (CAN) with malicious data and makes the car behave abnormally, have been reported. Therefore, countermeasures against this type of attack are needed. Modifying legacy electronic control units (ECUs) will affect development costs and reliability because in-vehicle networks have already been developed for most vehicles. Current countermeasures, such as authentication, require modification of legacy ECUs. On the other hand, anomaly detection methods may result in misdetection due to the difficulty in setting an appropriate threshold. Evaluating a reception cycle of data can be used to simply detect spoofing attacks. However, this may result in false detection due to fluctuation in the data reception cycle in the CAN. We propose the “delayed-decision cycle detection” method for improving a conventional cycle detection method, which does not require modification of legacy ECUs, detects intrusions with a low misdetection rate, and prevents intrusions.
2014-04-01
Technical Paper
2014-01-0397
Pit Schwanitz, Sebastian Werner, Johannes Zerbe, Dietmar Göhlich
Abstract A new methodology for crash sensitive vehicle structures has been developed to be used during the early stage of the Product Development Process (PDP). By frontloading significant and simplified CAE simulations and the use of stochastic optimization methods in conjunction with highly parametric CAD models, new concepts can be quickly identified and evaluated based on reliable product insight. Vehicle crashboxes have been chosen for verification of the methodology. An analysis of different but comparable vehicles showed a large variety of designs although they all absorb the energy of low speed crashes within a velocity of up to 15km/h. A powerful optimization model with a parametric geometry engine, a crash-solver and suitable optimization software, used within a batch process, has been established. The optimal results for one particular crashbox concept are presented to demonstrate the methodology and the benefit of the approach. Due to the relocation of the variant calculation at early stage, the optimization potential can be used extensively.
2014-04-01
Technical Paper
2014-01-0237
Prasad Rao Yerraguntla, Shashi Kulkarni, Deepak Asthana
Abstract Automotive Audio Signaling system is very vital and is controlled by local regulatory requirements. In India, usage of horn is very frequent due to highly congested traffic conditions, and is in the order of 10 to 12 times per kilometer. This results in the deterioration of the “contact”, which enables the functioning of the device. Hence the device requires premature replacement or frequent tuning, which are time consuming and results an increase in warranty costs and cost of service as well. Thus, to overcome this problem a unique and novel approach is proposed in this paper which enhances the life of the automobile horn, by implementing an additional pair of Contacts on circuit breakers, providing a parallel path for the power supply. This effort ensures that the life of the horn is increased by 5 times than the existing design. In addition, this approach completely eliminates the problems of premature failure or frequent tuning, yet without any change in the physical dimensions of the device, thus ensuring that no additional engineering efforts are required for its implementation.
2014-04-01
Technical Paper
2014-01-0160
Louis Tijerina, James Sayer
Abstract The objectives of this study were a) to determine how expert judges categorized valid Integrated Vehicle-Based Safety Systems (IVBSS) Forward Collision Warning (FCW) events from review of naturalistic driving data; and b) to determine how consistent these categorizations were across the judges working in pairs. FCW event data were gathered from 108 drivers who drove instrumented vehicles for 6 weeks each. The data included video of the driver and road scene ahead, beside, and behind the vehicle; audio of the FCW alert onset; and engineering data such as speed and braking applications. Six automotive safety experts examined 197 ‘valid’ (i.e., conditions met design intent) FCW events and categorized each according to a taxonomy of primary contributing factors. Results indicated that of these valid FCW events, between 55% and 73% could be considered ‘nuisance alerts’ by the driver. These were the FCW alerts presented in benign conditions (e.g., lead-vehicle turning) or as a result of deliberate driver action (aggressive driving).
2014-04-01
Technical Paper
2014-01-0149
Chi-Chun Yao, Jin-Yan Hsu, Yu-Sheng Liao, Ming Hung Li
Abstract Vehicle Rollover Prevention/Warning Systems have recently been an important topic in Advanced Driver Assistance Systems (ADAS) of automotive electronics field. This paper will propose a rollover-prevention system implementation with vehicle dynamic model, video-detection technique and rollover index to help the driver avoid accidents as driving into a curve. Due to the reason that vehicle rollover motion analysis needs complicated computation and accurate parameters of vehicle stability in real time, in the first stage a vehicle dynamic model based on Extended Kalman Filter (EKF) algorithm is built, which can estimate vehicle roll/yaw motion in the curve by vehicle sensors. And then the image-based technique will be employed in detecting the front road curvature, and combined in the system to predict vehicle steering status. The final stage is to apply the vehicle rollover index with estimated vehicle motion to predict the dangerous level to drivers for warning. In the system validation, a Digital Signal Processor (DSP) with Microcontroller Unit (MCU) hardware structure is equipped and implemented in our vehicle experimental platform.
2014-04-01
Technical Paper
2014-01-0167
Masayuki Takemura, Masato Imai, Masahiro Kiyohara, Kota Irie, Masao Sakata, Shoji Muramatsu
Abstract Driver safety continues to be improved by advances in active safety technologies. One important example is Lane Departure Warning (LDW). European regulators soon will require LDW in big cars to reduce traffic accidents and New Car Assessment Programs in various countries will include LDW in a few years. Our focus is on rear cameras as sensing devices to recognize lane markers. Rear cameras are the most prevalent cameras for outside monitoring, and new Kids and Cars legislation will make them obligatory in the United States from 2014. As an affordable sensing system, we envision a rear camera which will function both as a rear-view monitoring device for drivers and as an LDW sensing device. However, there is a great difficulty involved in using the rear camera: water-droplets and dirt are directly attached to the lens surface, creating bad lens condition. The purpose of this study is to improve the durability of lane recognition systems when water-droplets and dirt are deposited on the lens surface.
2014-04-01
Technical Paper
2014-01-0172
Edgar Yoshio Morales Teraoka, Shin Tanaka, Tsutomu Mochida
Abstract We develop a simulation tool which reproduces lane departure crashes for the purpose of estimating potential benefits of Lane Departure Warning (LDW) systems in the American traffic environment. Tools that allow a fast evaluation of active safety systems are useful to make better systems, more effective in the real world; however accuracy of the results is always an issue. Our proposed approach is based on developing a simulation tool that reproduces lane departure crashes, then adding the effect of the LDW to compare the cases with and without the safety system, and finally comparing the results of different settings of the safety system. Here, the accurate reproduction of the relevant crashes determines the reliability of the results. In this paper, we present the reproduction of the lane departure crashes occurred in American roads in one year, by using data distributions obtained from retrospective crash databases. We analyze data from NASS/GES1 and NASS/CDS2 to obtain the characteristics of lane departure accidents in the USA.
2014-04-01
Technical Paper
2014-01-0163
Stanley Chien, Qiang Yi, David Good, Ali Gholamjafari, Yaobin Chen, Rini Sherony
Abstract While the number of traffic fatalities as a whole continues to decline steadily over time, the number of pedestrian fatalities continues to rise (up 8% since 2009) and comprises a larger fraction of these fatalities. In 2011 there were 4,432 pedestrians killed and an estimated 69,000 pedestrian injuries [1]. A new generation of Pedestrian Pre-Collision Systems (PCS) is being introduced by car manufactures to mitigate pedestrian injuries and fatalities. In order to evaluate the performance of pedestrian PCS, The Transportation Active Safety Institute (TASI) at Indiana University-Purdue University Indianapolis is developing a set of test scenarios and procedures for evaluating the performance of pedestrian PCS with the support of the Collaborative Safety Research Center of Toyota. Pedestrian crashes are complex in that there are many aspects about location, driver behavior, and pedestrian behaviors that may have implications for the performance of the PCS. This complexity will generate far more scenarios than can be reasonably tested.
2014-04-01
Technical Paper
2014-01-0164
Cheng-Lung Lee, Hongyi Zhang, Hong Nguyen, Yu-Ting Wu, Christopher Smalley, Utayba Mohammad, Mark J. Paulik
Abstract A novel multi-modal scene segmentation algorithm for obstacle identification and masking is presented in this work. A co-registered data set is generated from monocular camera and light detection and ranging (LIDAR) sensors. This calibrated data enables 3D scene information to be mapped to time-synchronized 2D camera images, where discontinuities in the ranging data indicate the increased likelihood of obstacle edges. Applications include Advanced Driver Assistance Systems (ADAS) which address lane-departure, pedestrian protection and collision avoidance and require both high-quality image segmentation and computational efficiency. Simulated and experimental results that demonstrate system performance are presented.
2014-04-01
Technical Paper
2014-01-0565
Patrick Galipeau-Belair, Srikanth Ghantae, David Critchley, Sarathy Ramachandra, Moustafa EL-Gindy
Abstract This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH). Since the tractor-trailers and straight trucks utilize different structural components, separate concepts must be generated to accommodate each individual application.
2014-04-01
Technical Paper
2014-01-0561
Grant Hankins, Kenneth Krajnik, Bradley Galedrige, Shahab Sakha, Peter Hylton, Wendy Otoupal
Abstract A number of performance and safety related aspects of motorsports have begun to receive increased attention in recent years, using the types of engineering analysis common to other industries such as aerospace engineering. As these new engineering approaches have begun to play a larger role in the motorsports industry, there has been an increase in the use of engineering tools in motorsports design and an increase in the inclusion of motorsports in the engineering education process. The design, modeling, and analysis aspects of a recent project examining the design of roll cages for American short-track open-wheel racing cars will be discussed in this paper. Roll cage structures were initially integrated into cars of this type in the 1960s. Countless lives have been saved and serious injuries prevented since the introduction of cages into these types of cars. However, the general configuration of these cages has not seen significant change or improvement in the four decades since their introduction.
2014-04-01
Technical Paper
2014-01-0569
Ishika Zonina Towfic, Jennifer Johrendt
Abstract The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity. The model output, collision severity, is divided into three categories - fatal, injury, and property damage only.
2014-04-01
Technical Paper
2014-01-0567
Todd MacDonald, Moustafa EL-Gindy, Srikanth Ghantae, Sarathy Ramachandra, David Critchley
Abstract A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs. While a new FUPD is developed and tested which highlights benefits of deflecting the passenger vehicle in small overlap cases, a dual stage FUPD is proposed revealing potential benefits in utilizing the radiator to absorb some collision energy.
2014-04-01
Technical Paper
2014-01-0534
Jan Vychytil, Jaroslav Manas, Hana Cechova, Stanislav Spirk, Ludek Hyncik, Ludek Kovar
Abstract The paper concerns the development of a new scalable virtual human body model. The model has been developed to assess safety risk during various complex crash scenarios including impacts from different directions. The novel approach described couples the basic multi-body structure with deformable segments, resulting in short calculation time. Each multi-body structure segment carries the particular surface parts that are linked to the segment with non-linear springs representing the behavior of related soft tissues. The response of particular body segments (head, thorax, pelvis, lower extremities) is validated in known impact scenarios and the response of the model is tuned to the experimental corridors obtained from literature. The tuning process involved the adjustment of both model material and numerical parameters in order to get the correct response for all the tests. Several energy level impacts from different directions are usually considered in order to generalize the model; to test its robustness and correct biofidelic performance.
2014-04-01
Technical Paper
2014-01-0532
Simon B. Albrodt, Fadi Tahan, Kennerly Digges
Abstract Different roof strength methods are applied on the 2003 Ford Explorer finite element (FE) model to achieve the current Federal Motor Vehicle Safety Standard (FMVSS) 216 requirements. Two different modification approaches are utilized. Additionally, the best design of each approach is tested dynamically, in rollover and side impact simulations. In the first approach, several roll cage designs are integrated in all pillars, roof cross-members, and in the side roof rails. A roll cage design with a strength-to-weight ratio (SWR) of 3.58 and 3.40 for driver and passenger sides, respectively, with a weight penalty of 18.54 kg is selected for dynamic test assessments. The second approach investigates different localized reinforcements to achieve a more reasonable weight penalty. A localized reinforcement of the B-pillar alone with a tube meets the new FMVSS 216 requirements with a weight penalty of 4.52 kg and is selected for dynamic analyses. The two selected reinforcement designs are tested in a dynamic unconstrained rollover crash under different pitch angles while using common rollover initial conditions.
2014-04-01
Technical Paper
2014-01-0533
Mindy Heading, Douglas Stein, Jeff Dix
Abstract Ejection Mitigation testing is now required by the U.S. government through FMVSS 226 [1]. FMVSS 226 contains the requirement of using a linear guided headform in a horizontal impact test into the inflated curtain, or other ejection mitigation countermeasure that deploys in the event of a rollover. The specification provides dimensions for a featureless headform [2] but there are limited specifications for the headform skin surface condition. In the “Response to Petitions” of the 2011 Final Rule for FMVSS 226 [3], the NHTSA declined the option to include a headform cleaning procedure. This research presents a case study to quantify the effect of changes in the friction between the headform and curtain on the measured excursion. The study presented here shows that a change in friction between the headform and curtain can affect excursion values by up to 135 millimeters (mm).
2014-04-01
Technical Paper
2014-01-0540
Shai Cohen, Dhafer Marzougui, Cing-Dao Kan, Fadi Tahan
Abstract Many dynamic test systems currently exist to assess rollover. This paper introduces a new test device that combines features from a multitude of different tests. It also covers the concept development, a scaled prototype design and test results from both physical and virtual tests. The Guided Rollover Test (GRT) device subjects vehicles to repeatable initial conditions by having a cart follow a guided maneuver similar to a forward J-turn with an increasing curvature sufficient to roll most vehicles. A test vehicle is carried on the cart at constant longitudinal velocity until it rolls. The cart is fitted with a tripping edge to eliminate slipping and remove the influence of tire properties and road-surface friction. Vehicles are subjected to a rollover based on their own performance characteristics which define the dynamics and consequently the roof to ground contact. Vehicle mechanical systems (suspension), passive safety systems (roof) and occupant containment systems (airbags, seat-belts, etc.) would be assessed under dynamic rollover loading.
2014-04-01
Technical Paper
2014-01-0538
Janet Brelin-Fornari, Sheryl Janca
Abstract The National Highway Traffic Safety Administration (NHTSA) has utilized a two part sled fixture to evaluate a near side test protocol for child restraint systems (CRS). The test was designed to impact the CRS with a fixed door at nearly 20 mph. This paper examines the affects of various fixture parameters on the acceleration and velocity profiles of the two part system during the impact event. It was determined that the kinematic time histories are sensitive to crush energy dissipation (as evaluated with variance in aluminum honeycomb volume) and fixture weight. It was also determined that payload weight, impact speed, and impact plane alignment have a small effect on the acceleration and velocity profiles. Even though the kinematics of the secondary carriage was small with the change in the impact plane alignment, it was determined that the CRS utilized in the standard test would have a 23% reduction in impact energy when compared to the CRS with the impact planes aligned.
2014-04-01
Technical Paper
2014-01-0543
Santosh Uttam Bhise, Meyyappan Valliappan
Abstract This paper highlights a simplified CAE model technique, which can simulate and predict door crush strength performance quickly. Such quick models can be used for DFSS and Design change studies. The proposed method suggests an equivalent sub model technique using only the door beam with tuned stiffness end springs to predict FMVSS214S full vehicle crush performance. Such models can be solved in minutes and hence very useful for DFSS studies during product design. The proposed method can be used to finalize door beam design for identical size of vehicle doors to meet required FMVSS214S crush performance. The paper highlights the door beam end springs tuning for identical size of cars and SUVs. Four vehicles were considered for the study. A single spring F-D (force -displacement) is tuned which correlated well for frond door of all the four vehicles. A separate unique spring F-D was needed which correlated well for rear door of all the 4 vehicles.
2014-04-01
Technical Paper
2014-01-0544
James Nelsen, Chang Su Seo
Abstract This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
2014-04-01
Technical Paper
2014-01-0550
Ali Seyed Yaghoubi, Paul Begeman, Golam Newaz, Derek Board, Yijung Chen, Omar Faruque
Abstract The present investigation details an experimental procedure for frontal impact responses of a generic steel front bumper crush can (FBCC) assembly subjected to a rigid full and 40% offset impact. There is a paucity of studies focusing on component level tests with FBCCs, and of those, speeds carried out are of slower velocities. Predominant studies in literature pertain to full vehicle testing. Component level studies have importance as vehicles aim to decrease weight. As materials, such as carbon fiber or aluminum, are applied to vehicle structures, computer aided models are required to evaluate performance. A novel component level test procedure is valuable to aid in CAE correlation. All the tests were conducted using a sled-on-sled testing method. Several high-speed cameras, an IR (Infrared) thermal camera, and a number of accelerometers were utilized to study impact performance of the FBCC samples. A linear potentiometer was installed next to each crush-can to directly measure crush length of the can.
Viewing 241 to 270 of 15836

Filter

  • Article
    493
  • Book
    105
  • Collection
    42
  • Magazine
    617
  • Technical Paper
    10008
  • Standard
    4571