Criteria

Text:
Topic:
Display:

Results

Viewing 241 to 270 of 15823
Technical Paper
2014-04-01
Shweta Rawat, Soumya Kanta Das
Abstract With the ever increasing emphasis on vehicle occupant safety, the safety of pedestrians is getting obscured behind the A-pillars that are expanding in order to meet the federal roof crush standards. The serious issue of pillar blind spots poses threats to the pedestrians who easily disappear from driver's field of view. To recognize this blinding danger and design the car around the driver's eye, this paper proposes the implementation of Aluminum Oxynitride marked under name AlON by Surmet Corporation for fabrication of A-pillars that can allow more than 80% visibility through them. AlON is a polycrystalline ceramic with cubic spinel crystal structure and is composed of aluminum, oxygen and nitrogen. With hardness more than 85% than sapphire, its applications range from aerospace to defense purposes which qualify it in terms of strength and thus imply that it can be conveniently used as A-pillars in vehicles. Furthermore, it possesses characteristics of being bonded to metals as well.
Technical Paper
2014-04-01
Jeong Keun Lee, Byung-Jae Ahn, Ye Ri Hong
Abstract In current inflatable curtain airbag development process, the curtain airbag performance is developed sequentially for the airbag coverage, FMVSS 226, FMVSS 214 and NCAP. Because the FMVSS 226 for the ejection mitigation and the NCAP side impact test require the opposite characteristics in terms of the dynamic stiffness of the inflatable curtain airbag, the sequential development process cannot avoid the iteration for dynamic stiffness optimization. Airbag internal pressure characteristics are can be used to evaluate the airbag performance in early stage of the development process, but they cannot predict dynamic energy absorption capability. In order to meet the opposite requirements for both FMVSS 226 and NCAP side impact test, a test and CAE simulation method for the inflatable curtain airbag was developed. The purpose of this study is to standardize the test setup for comparing the energy absorption capability of inflatable curtain airbag and to make criteria for meeting both FMVSS 226 and NCAP early in the program.
Technical Paper
2014-04-01
Qiang Yi, Stanley Chien, David Good, Yaobin Chen, Rini Sherony
Abstract According to pedestrian crash data from 2010-2011 the U.S. General Estimates System (GES) and the Fatality Analysis Report System (FARS), more than 39% of pedestrian crash cases occurred at night and poor lighting conditions. The percentage of pedestrian fatalities in night conditions is over 77%. Therefore, evaluating the performance of pedestrian pre-collision systems (PCS) at night is an essential part of the pedestrian PCS performance evaluation. The Transportation Active Safety Institute (TASI) of Indiana University-Purdue University Indianapolis (IUPUI) is conducting research for the establishment of PCS test scenarios and procedures in collaboration with Toyota's Collaborative Safety Research Center. The objective of this paper is to describe the design and implementation of a reconfigurable road lighting system to support the pedestrian PCS performance evaluation for night road lighting conditions. First, the test conditions of the road lighting (light intensity and uniformity) are generated by combining recommendations from road lighting design standards and the average measured lighting levels at various crash locations.
Technical Paper
2014-04-01
Hang Yin, Weiming Zeng, Guobiao Yang, Songgang Li
Abstract When an object was subjected an impact loading, stress wave was produced in the object. Studying the regularity of stress-wave propagation was significant to the study of objects subjected to impact loading. When stress wave travelled in the object, principal stress on free boundary was useful to theoretical analysis and calculation. In this article, a new kind of dynamic photoelastic apparatus was used. Isochromatic and isoclinic of the object subjected to impact loading could be obtained combining dynamic photoelastic experiment and related test equipment. By analyzing the isoclinic, there would be a conclusion that the angle between the isoclinic and the free boundary was not 0°or 90°. So the values of the two principal stress on the boundary were all not 0. The result obtained from the electrometric method came to the same conclusion. Analysis showed the result of dynamic photoelastic method was compatible with the result of electrometric method. So the method in this article was feasible and accurate.
Technical Paper
2014-04-01
Horst Lanzerath, Niels Pasligh
Abstract Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient. Therefore new FEM crash methods for structural adhesives have been investigated and validated with the help of test results.
Technical Paper
2014-04-01
Mathias Poklitar, Lothar Seybold
As part of the launch of the refrigerant R-1234yf there were a number of studies done regarding the ignition behavior of this new refrigerant in passenger cars. These tests were conducted by a number of automobile manufacturers, component suppliers, and the refrigerant supplier under laboratory conditions at the component and vehicle level. In November 2009 the international automotive industry concluded that the R-1234yf can be used safely in automotive air conditioning systems. Further tests were conducted by different automobile manufacturers, suppliers, and the refrigerant supplier under various laboratory and vehicle operation conditions means hot surfaces in the engine compartment. A number of vehicle manufactures have conducted full vehicle crash tests. In this paper, real world accidents are analyzed using the German In-Depth Accident Study (GIDAS) database as well as the thermal parameters for ignition of R-1234yf, i.e. concentration and surface temperature to create a worst-case scenario.
Technical Paper
2014-04-01
Bryan Styles, Jeffrey Santrock, Curtis Vincent, Michael Leffert, Narasimha Putcha
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered. Factors considered in this analysis include: crush and deformation of the vehicle structure, airflow in the engine compartment, exhaust system temperatures during different driving scenarios, and coolant release due to damage of the engine coolant system.
Technical Paper
2014-04-01
Lothar Seybold, Bryan Styles, Ioannis Lazaridis, Hans-Joerg Kneusels
The European Commission (EC) as well as the United States Environmental Protection Agency (EPA) published legislations to regulate or encourage the use of low Global Warming Potential (GWP) refrigerants applied to Mobile Air Conditioning (MAC) systems. Europe mandates a GWP less than 150 of MAC refrigerants for new vehicle types. The thermodynamic refrigerant properties of R-1234yf are slightly different from the properties of R-134a, currently used in MAC systems. Although the basic material data show that R-1234yf is flammable, ignition tests performed for an automotive engine under-hood environment reveal design and packaging influences of its ignition behavior. After extensive collaborative research in 2009, the Society of Automotive Engineers Cooperative Research Team (SAE CRP1234) concluded that R-1234yf is suitable for use in automotive applications. Further ignition risk assessment regarding R-1234yf usage in MAC systems was done by SAE CRP1234-4 in 2013. They concluded that “risks are still very small compared to the risks of a vehicle fire from all causes and well below risks that are commonly viewed as acceptable by the general public.”
Technical Paper
2014-04-01
Pit Schwanitz, Sebastian Werner, Johannes Zerbe, Dietmar Göhlich
Abstract A new methodology for crash sensitive vehicle structures has been developed to be used during the early stage of the Product Development Process (PDP). By frontloading significant and simplified CAE simulations and the use of stochastic optimization methods in conjunction with highly parametric CAD models, new concepts can be quickly identified and evaluated based on reliable product insight. Vehicle crashboxes have been chosen for verification of the methodology. An analysis of different but comparable vehicles showed a large variety of designs although they all absorb the energy of low speed crashes within a velocity of up to 15km/h. A powerful optimization model with a parametric geometry engine, a crash-solver and suitable optimization software, used within a batch process, has been established. The optimal results for one particular crashbox concept are presented to demonstrate the methodology and the benefit of the approach. Due to the relocation of the variant calculation at early stage, the optimization potential can be used extensively.
Technical Paper
2014-04-01
Sanjeev Kumar, Rahul Bettakote, Pinak Deb
Abstract Offset crash compliance of a compact car is severe due to the compact layout and stringent fuel economy, weight and cost targets. Scope of the current work is to improve the structural crash performance of a compact car through CAE, in order to meet the offset frontal crash requirements as per ECE R94 Regulation. The project has been classified in three main phases. First phase includes the evaluation of baseline vehicle in CAE. In order to ensure the accuracy of CAE prediction, a methodology for predicting Spotweld rupture was implemented. Using this methodology, it is possible to find out the location and time of spotweld rupture as well as propagation of spotweld rupture in CAE. CAE results of spotweld rupture prediction showed good agreement with the physical test. In second phase, design iterations were carried out in order to meet the performance targets of structural deformation. At critical locations of spotweld rupture, spotwelds were reinforced by addition of arc welds tugs and bolts.
Technical Paper
2014-04-01
Yukou Takahashi, Miwako Ikeda
Abstract The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model. The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH. The results of this study showed that the change of the mass distribution between the bony and flesh parts, along with the addition of the mass compensating for the upper body, provide more biofidelic FlexPLI tibia BMTHs, when used at the normal standing height.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Muthukumar Muthanandam, Satheesh Narayanan
Abstract A logistic regression analysis of accident cases in the NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrian pelvis injuries tend to be complex and depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, and the gender and age of the pedestrian. Adult female models (50th %ile female AF50: 161 cm and 61 kg; 5th %ile female AF05: 154 cm and 50 kg) were developed by morphing the JAMA 50th %ile male AM50 and substituting the pelvis of the GHBMC AM50 model. The fine-meshed pelvis model thus obtained is capable of predicting pelvis fractures. Simulations conducted with these models indicate that the characteristics of pelvis injury patterns in male and female pedestrians are influenced by the hip/BLE height ratio and to some extent by the pelvis bone shape. A previously developed six-year-old (6YO) child pedestrian model and the newly developed models were used to estimate the head impact time (HIT) for a typical SUV fitted with an active pop-up hood system.
Technical Paper
2014-04-01
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers. In evaluating rollover occupant protection system performance, various studies have recognized and demonstrated the upward and outward excursion of belted occupants that occurs during the airborne phase of a rollover, as well as excursion from vehicle-to-ground impacts.
Technical Paper
2014-04-01
Mark William Arndt, John Wiechel
Abstract Assuming rigid body motion, recorded acceleration and recorded roll rates at the center of gravity, equations are used to calculate the local three-dimensional accelerations at hypothetical seating positions' Emergency Locking [seat belt] Retractors (ELR) during a steer induced rollover crash. For a threshold of 0.7 g, results demonstrated that intervals in the vehicle's response that may cause the ELR's inertial sensor to move into a neutral zone were limited to localized high magnitude negative vertical acceleration events during the rollover segment with a median duration of 4 ms, average duration of 4.8 ms and a maximum calculated duration of 31.7 ms. Changing the threshold to 0.35 g reduced the interval count by 70 percent and maximum duration by approximately 50 percent. Since a retractor in an interval when an inertial sensor may move into a neutral position will unlock only after belt retraction and at an acceleration ratio below its threshold, the duration that a retractor may be unlocked was probably less than the duration of an interval when a vehicle's response would allow an inertial sensor to move into a neutral zone.
Technical Paper
2014-04-01
Taewung Kim, Jason Kerrigan, Varun Bollapragada, Jeff Crandall, Ravi Tangirala, Michael Guerrero
Abstract Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development. A full-size SUV vehicle dynamics model was developed and validated with static test data and curb-trip rollover test data.
Technical Paper
2014-04-01
Vesna Savic, Matthew Pawlicki, Paul Krajewski, Mark Voss, Louis Hector, Keith Snavely
Abstract Global regulations intended to enhance pedestrian protection in a vehicle collision, thereby reducing the severity of pedestrian injuries, are presenting significant challenges to vehicle designers. Vehicle hoods, for example, must absorb a significant amount of energy over a small area while precluding impact with a hard engine compartment component. In this paper, a simple passive approach for pedestrian protection is introduced in which thin metal alloy sheets are bent to follow a C-shaped cross-sectional profile thereby giving them energy absorbing capacity during impact when affixed to the underside of a hood. Materials considered were aluminum (6111-T4, 5182-O) and magnesium (AZ31-O, AZ61-O, ZEK100) alloys. To evaluate the material effect on the head injury criterion (HIC) score without a hood, each C-channel absorber was crushed in a drop tower test using a small dart. Two high speed cameras captured dart image data before and during impact from which HIC scores were computed with stereo digital image correlation (DIC).
Technical Paper
2014-04-01
Hiroyuki Asanuma, Yukou Takahashi, Miwako Ikeda, Toshiyuki Yanaoka
Abstract Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation. A unique model called a multi-layer model developed in this study represented each of the hood and the windshield with a stack of the panel representing the entire area of these components, while applying localized stiffness characteristics and contact definition with a particular pedestrian body region that contacts with the layer represented by the stiffness characteristics.
Technical Paper
2014-04-01
Dietmar Otte, Birgitt Wiese
This study deals with the risk of injury to the bicyclist's head and the benefits of wearing a bicycle helmet in terms of reduction of injury severity or even injury avoidance. The accident data of 4,245 injured bicyclists as a randomized sample, collected by a scientific research team within the GIDAS project (German In-Depth Accident Study) were analyzed. Given that head injuries result in approximately 40% of bicycle-related crashes, helmet usage provides a sensible first-level approach for improving incidence and severity of head injuries. The effectiveness of the bicycle helmet was examined using descriptive and multivariate analysis for 433 bicyclists with a helmet and 3,812 bicyclists without a helmet. Skull fractures, severe brain injuries and skull base fractures were up to 80% less frequent for bicyclists wearing a helmet. Among individuals 40 years of age and older, a significant increase of severe head injuries occurred if no helmet was used compared to younger persons with helmet.
Technical Paper
2014-04-01
Bingbing Nie, Qing Zhou, Yong Xia, Jisi Tang
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Technical Paper
2014-04-01
Timothy P. Austin, Peter A. Chisholm, Roger W. Schreiber, P. Michael Neal
Abstract In the investigation of a collision involving recreational watercraft, analytical methods are generally limited when compared to incidents involving land-based vehicles. As is indicated in previous publications, investigators often rely on time/distance relationships, human factors, the matching of damage to determine vessel positioning at impact, and the recollections of witnesses. When applicable, speed estimates are generally based on the boat engine's revolutions. By considering the engine speed, the drive gear ratio, the propeller pitch, and the likely slip of the propeller, an estimation of the boat's travel speed can be made. In more recent publications, it has been recognized that Event Data Recorder (EDR) technology incorporated into various Electronic Control Units (ECUs) used in automotive applications can be beneficial to collision investigation and reconstruction. These devices record data surrounding diagnostic occurrences, airbag deployments, and, with respect to some heavy vehicles, “last stop” and/or “sudden deceleration” events.
Technical Paper
2014-04-01
Richard R. Ruth, Jeremy Daily
Abstract 2013 and 2014 Ford Flex vehicles and airbag control modules with event data recorders (EDRs) were tested to determine the accuracy of speed and other data in the steady state condition, to evaluate time reporting delays under dynamic braking conditions, and to evaluate the accuracy of the stability control system data that the module records. This recorder is from the Autoliv RC6 family and this is the first known external research conducted on post 49CFR Part 563 Ford EDRs. The vehicle was instrumented with a VBox and a CAN data logger to compare external GPS based speeds to CAN data using the same synchronized time base. The vehicle was driven in steady state, hard braking, figure 8 and yaw conditions. The Airbag Control Module (ACM) was mounted onto a moving linear sled. The CAN bus data from driving was replayed as the sled created recordable events and the EDR data was compared to the reference instrumentation. The accuracy and timing of the data on a second stability control CAN bus was verified, and the transfer function between the CAN bus data and the EDR data was mapped, such that EDR data from any set of CAN data can be predicted.
Technical Paper
2014-04-01
Shotaro Odate, Naotoshi Takemura, William Seaman
Abstract Currently, a number of automobile OEMs have been equipped motorized seatbelt systems with volume-production vehicles. Since the current systems are generally initiated by the activation of the automatic collision brakes, or the brake assist systems; the benefit of those systems is limited solely in pre-crash phase. To enhance the effectiveness of the system, we attempted to develop a motorized seatbelt system which enables to control retracing force according to various situations during driving. The present system enables to accomplish both the occupants' comfort and protection performance throughout their driving from when it is buckled to when unbuckled and stored, or during both routine and sport driving, as well as pre-crash phase. Moreover, it was confirmed that lateral occupants' excursion during driving was reduced by up to 50% with the present system.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Muthukumar Muthanandam, Jeyabharath Manoharan, Satheesh Narayanan
Abstract A comprehensive analysis was performed to evaluate the effect of BMI on different body region injuries for side impact. The accident data for this study was taken from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS). It was found that the mean BMI values for driver and front passengers increases over the years in the US. To study the effect of BMI, the range was divided into three groups: Thin (BMI<21), Normal (BMI 24-27) and Obese (BMI>30). Other important variables considered for this study were model year (MY1995-99 for old vehicles & MY2000-08 for newer vehicles), impact location (side-front F, side-center P & side-distributed Y) and direction of force (8-10 o'clock for nearside & 2-4 o'clock for far-side). Accident cases involving older occupants above 60 years was omitted in order to minimize the bone strength depreciation effect. Results of the present study indicated that the Model Year has influence on lower extremity injuries. Occurrence of pelvis injury was found to be influenced by BMI and was validated with logistic regression analysis.
Technical Paper
2014-04-01
Michael E. Zabala, Nicholas Yang, Stacy Imler, Ke Zhao, Rose Ray
Abstract Three years of data from the Large Truck Crash Causation Study (LTCCS) were analyzed to identify accidents involving heavy trucks (GVWR >10,000 lbs.). Risk of rollover and ejection was determined as well as belt usage rates. Risk of ejection was also analyzed based on rollover status and belt use. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants. These data were further analyzed to determine injury distribution based on factors such as crash type, ejection, and restraint system use. The maximum AIS score (MAIS) was analyzed and each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered for an AIS score of three or greater (AIS 3+). The majority of heavy truck occupants in this study were belted (71%), only 2.5% of occupants were completely or partially ejected, and 28% experienced a rollover event. In the analyzed data set, none of the belted occupants experienced a complete ejection while 4.4% of unbelted occupants did experience a complete ejection.
Technical Paper
2014-04-01
Ellen L. Lee, Patrick J. Lee, Wilson C. Hayes
Abstract Non-neutral posture prior to impact is one of many factors thought to influence the onset and severity of whiplash associated disorders following low speed, rear impact collisions. The Graphical Articulated Total Body Model (GATB) is one simulation tool that has been used to investigate injury risk in rear impact collisions, though the model has not previously been validated for occupants in non-neutral postures. The main purpose of this study was to evaluate the performance of the GATB model during low speed rear impacts in out-of-position postures, by comparing simulations to previously published volunteer head accelerations. Twelve simulations (four occupants in each of three postures) were performed. Results demonstrated good agreement between the GATB simulations and the volunteer kinematics, with a mean error for peak head acceleration of 3.4 ± 13%. In addition, influence of out-of-position postures on the risk of whiplash injury for different sized occupants was investigated using the Neck Injury Criterion (NIC).
Technical Paper
2014-04-01
Lisa P. Gwin, Herbert Guzman, Enrique Bonugli, William Scott, Mark Freund
Abstract There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured. There was considerable restitution in the impacts with the mattress and the test subjects experienced changes in velocity (ΔVs) of 5.2-11.4 m/s (11.6-25.5 mph).
Technical Paper
2014-04-01
Bethany L. Suderman, Irving S. Scher, Randal P. Ching
Abstract Previous studies have shown that occupant kinematics in lateral impacts are different for near- and far-side occupants. Additionally, injuries to far-side occupants in high-speed lateral impacts have been better documented in the scientific literature; few studies have looked at low-speed far-side occupants. The purpose of this study was to determine the risk of lumbar spine injury for restrained and unrestrained far-side occupants in low- to moderate- speed lateral impacts. The NASS/CDS database was queried for far-side occupants in lateral impacts for different levels of impact severity (categorized by Delta-V): 0 to 8 km/h, 8 to 16 km/h, 16 to 24 km/h and 24 to 32 km/h. To further understand the lumbar spine injuries sustained by occupants in real-world impacts, far-side lateral impact tests with ATDs from the NHTSA Biomechanics Test Database were used to estimate lumbar loads in generic far-side sled tests. From the NASS-CDS data, the risk of an AIS2+ lumbar spine injury was less than 0.2% for lateral impacts with Delta-V's less than 32 km/h.
Technical Paper
2014-04-01
Wade D. Bartlett, Duane Meyers
Abstract The evasive capabilities of motorcycles and riders are often an important consideration when analyzing a motorcycle crash. Specifically, the longitudinal distance or time required for a motorcycle to move laterally some distance can be of critical interest. Previous publications on this topic have not all measured the same thing and have often included limited test data so their results can be difficult to compare or apply. In addition to reviewing some of the literature on the topic, this paper will present the results of a series of tests conducted with four riders on four motorcycles swerving 2 m (6.5 ft) to their left after passing through a gate at speeds of 40 to 88 km/h (25 to 55 mi/h). The most recent testing involved relatively skilled riders who had faster transitions and greater willingness to lean than the “average” rider generally described in the literature. Separating the perception-reaction time from the evaluation of the turn-away maneuver itself simplifies the analysis, though wide individual performance variation still exists.
Technical Paper
2014-04-01
Nathan A. Rose, Neal Carter
Abstract In a 2012 paper, Brach, Brach, and Louderback (BBL) investigated the uncertainty that arises in calculating the change in velocity and crush energy with the use of the CRASH3 equations (2012-01-0608). They concluded that the uncertainty in these values caused by variations in the stiffness coefficients significantly outweighed the uncertainty caused by variations in the crush measurements. This paper presents a revised analysis of the data that BBL analyzed and further assesses the level of uncertainty that arises in CRASH3 calculations. While the findings of this study do not invalidate BBL's ultimate conclusion, the methodology utilized in this paper incorporated two changes to BBL's methodology. First, in analyzing the crash test data for several vehicles, a systematic error that is sometimes present in the reported crush measurements was accounted for and corrected. This systematic error arises when a vehicle's plastic bumper fascia rebounds more than the underlying structure, creating an air gap and causing the reported crush measurements both to underestimate the actual deformation and to exhibit more scatter than they otherwise would.
Technical Paper
2014-04-01
Toshiyuki Yanaoka, Yasuhiro Dokko
Abstract The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC. The generational difference of intracranial responses related to TBI, such as cumulative strain damage measure (CSDM), dilatational damage measure (DDM) and elongation of bridging vein (BV), were studied using the models.
Viewing 241 to 270 of 15823

Filter

  • Article
    488
  • Book
    105
  • Collection
    42
  • Magazine
    615
  • Technical Paper
    10013
  • Standard
    4560
  • Article
    4560