Display:

Results

Viewing 241 to 270 of 16178
2015-04-14
Journal Article
2015-01-0567
Kenji Takada, Kentaro Sato, Ninshu Ma
Abstract In order to reduce automobile body weight and improve crashworthiness, the use of high-strength steels has increased greatly in recent years. An optimal combination of both crash safety performance and lightweight structure has been a major challenge in automobile body engineering. In this study, the Cockcroft-Latham fracture criterion was applied to predict the fracture of high-strength steels. Marciniak-type biaxial stretching tests for high-strength steels were performed to measure the material constant of the Cockcroft-Latham fracture criterion. Furthermore, in order to improve the simulation accuracy, local anisotropic parameters based on the plastic strain (strain dependent model of anisotropy) were measured using the digital image grid method and were incorporated into Hill's anisotropic yield condition by the authors. In order to confirm the validity of the Cockcroft-Latham fracture criterion, uniaxial tensile tests were performed.
2015-04-14
Journal Article
2015-01-1381
Jason P. Huczek, R. Rhoads Stephenson
Abstract The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis.
2015-04-14
Journal Article
2015-01-1383
Andrew Blum, Richard Thomas Long
Abstract Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
2015-04-14
Journal Article
2015-01-1379
Hideki Matsumura, Shinichiro Itoh, Kenichi Ando
Abstract Lithium-ion cells are being used in an increasing number of electric and hybrid vehicles. Both of these vehicle types contain many cells. Despite various safety measures, however, there are still reports of accidents involving abnormal heat, smoke, and fire caused by thermal runaway in the cells. If thermal runaway in one cell triggers that of another and thus causes thermal runaway propagation, this can lead to rupture of the battery pack, car fire, or other serious accidents. This study is aimed to ensure the safety of vehicles with lithium-ion cells by clarifying such accident risks, and so we investigated the process of thermal runaway propagation. In the experiment, we created a battery module made of seven laminate-type cells tightly stacked one on another. Then, we induced thermal runaway in one of the cells, measured the surface temperatures of the cells, and collected video data as the process developed. As a result, all of the seven cells underwent thermal runaway.
2015-04-14
Journal Article
2015-01-1386
Devin SJ Caplow-Munro, Helen Loeb, Venk Kandadai, Flaura Winston
Abstract Inadequate situation awareness and response are increasingly recognized as prevalent critical errors that lead to young driver crashes. To identify and assess key indicators of young driver performance (including situation awareness), we previously developed and validated a Simulated Driving Assessment (SDA) in which drivers are safely and reproducibly exposed to a set of common and potentially serious crash scenarios. Many of the standardized safety measures can be calculated in near real-time from simulator variables. Assessment of situation awareness, however, largely relies on time-consuming data reduction and video coding. Therefore, the objective of this research was to develop a near real-time automated method for analyzing general direction and location of driver's gaze in order to assess situation awareness.
2015-04-14
Technical Paper
2015-01-0407
Timothy W. Skszek, Matthew Zaluzec, Jeff Conklin, David Wagner
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance, occupant safety and utility of the baseline production vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine, resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the MMLV project approach, mass reduction and environmental impact.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
Abstract The explicit methods analysis solver LS-DYNA was used to create technology for simulating airbag deployment and plastic airbag lid tear-away in the front passenger seat. The present study clarified the mechanical properties and the transitions in fracture pattern of the material at low temperature plastic this way, an appropriate modeling method was developed and the prediction accuracy of the simulation of airbag lid tear-away on deployment was increased. Tensile testing of the material was carried out where there were differences in thickness of the tear-away section and the fracture characteristics were determined. A material model was created by analyzing changes in fracture characteristics and collapse patterns, taking into consideration the effects of strain and strain rate localization on fracture strain as well as ductile-brittle fracture transition. Next, airbags were subjected to the impactor testing.
2015-04-14
Journal Article
2015-01-1422
Neal Carter, Nathan A. Rose, David Pentecost
Abstract Several sources report simple equations for calculating the lean angle required for a motorcycle and rider to traverse a curved path at a particular speed. These equations utilize several assumptions that reconstructionists using them should consider. First, they assume that the motorcycle is traveling a steady speed. Second, they assume that the motorcycle and its rider lean to the same lean angle. Finally, they assume that the motorcycle tires have no width, such that the portion of the tires contacting the roadway does not change or move as the motorcycle and rider lean. This study reports physical testing that the authors conducted with motorcycles traversing curved paths to examine the net effect of these assumptions on the accuracy of the basic formulas for motorcycle lean angle. We concluded that the basic lean angle formulas consistently underestimate the lean angle of the motorcycle as it traverses a particular curved path.
2015-04-14
Technical Paper
2015-01-1461
Dietmar Otte
Abstract During most pedestrian-vehicle crashes the car front impacts the pedestrian and the whole body wraps around the front shape of the car. This influences the head impact on the vehicle. Meanwhile the windscreen is a major impact point and tested in NCAP conditions. The severity of injuries is influenced by car impact speed; type of vehicle; stiffness and shape of the vehicle; nature of the front (such as the bumper height, bonnet height and length, windscreen frame); age and body height of the pedestrian; and standing position of the pedestrian relative to the vehicle front. The so called Wrap Around Distance WAD is one of the important measurements for the assessment of protection of pedestrians and of bicyclists as well because the kinematic of bicyclists is similar to that of pedestrians. For this study accidents of GIDAS were used to identify the importance of WAD for the resulting head injury severity of pedestrians and bicyclists.
2015-04-14
Journal Article
2015-01-0319
Reena Kumari Behera, Jiji Gangadharan, Krishnan Kutty, Smita Nair, Vinay Vaidya
Abstract This paper presents a vision based pedestrian detection system. The presented algorithm is a novel method that accurately segments the pedestrian regions in real time. The fact that the pedestrians are always vertically aligned is taken into consideration. As a result, the edge image is scanned from bottom to top and left to right. Both the color and edge data is combined in order to form the segments. The segmentation is highly dependent on the edge map. Even a single pixel dis-connectivity would lead to incorrect segments. To improve this, a novel edge linking method is performed prior to segmentation. The segmentation would consist of foreground and background segments as well. The background clutter is removed based on certain predefined conditions governed by the camera features. A novel edge based head detection method is proposed for increasing the probability of pedestrian detection. The combination of head and leg pattern will determine the presence of pedestrians.
2015-04-14
Technical Paper
2015-01-1428
Shane Richardson, Andreas Moser, Tia Lange Orton, Roger Zou
Abstract Current techniques that can be used to evaluate and analyse lateral impact speeds of vehicle crashes with poles/trees are based on measuring the deformation crush and using lateral crash stiffness data to estimate the impact speed. However, in some cases the stiffness data is based on broad object side impacts rather than pole impacts. Some have argued that broad object side impact tests can be used for analysing narrow object impacts; however previous authors have identified the fallacy of this premise. Publicly available side pole crash test data is evaluated in terms of crush depth impact speed and impact energy for six general vehicle types. A range of simulated pole impact tests at various speeds and impact angles were conducted using LS-Dyna and PC-Crash. Publicly available Finite Element Vehicle models of a 1996 Ford Taurus, a 1994 Chevrolet C2500 and a 1997 Geo Metro (Suzuki Swift) were used, providing relationships among impact speeds, crush depths and impact angles.
2015-04-13
WIP Standard
J3095
impact calibration procedure
2015-04-10
Book
This is the electronic format of the Journal.
2015-04-10
WIP Standard
J2663
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composit construction. The expected accuracy of the method is about +/- 10% of the sample permeation rate.
2015-04-10
WIP Standard
J1748
This SAE Recommended Practice applies to determining worst-case fuel, conditioning test specimens in worst-case fuel(s) prior to testing, individual tests for properties of polymers exposed to methanol-gasoline fuel mixtures. The determination of equilibrium, as well as typical calculations are also covered. Polymers are used in applications which require exposure to a variety of fluid environments. Tests to determine the effects of such exposure on material properties are well established. However, the determination of the effects on polymers exposed to fuels of variable alcohol and ether content poses new problems. This document seeks to address those concerns by detailing changes to standard tests that make them suitable for that purpose.
2015-04-09
WIP Standard
AS5975C
Scope is unavailable.
2015-04-09
Standard
J850_201504
Fixed rigid barrier collisions can represent severe automotive impacts. Barrier collision tests are conducted on automotive vehicles to obtain information of value in reducing occupant injuries and in evaluating structural integrity. The purpose of this SAE Recommended Practice is to establish sufficient standardization of barrier collision methods so that results of similar tests conducted at different facilities can be compared. The barrier device may be of almost any configuration, such as flat, round, offset, etc.
2015-04-09
Standard
J1538_201504
The terms included in the Glossary are general in nature and may not apply to all manufacturers' systems. All terms in Section 3 apply to automotive inflatable restraint systems in general which are initiated by an electric or mechanical stimulus upon receipt of a signal from a sensor. These terms are intended to reflect existing designs and the Glossary will be updated as information on other types of systems becomes available. Appendix A is included to identify terminology that is no longer in common use or specifically applicable to inflatable restraint systems, but was published in the December 2001 version of SAE J1538.
2015-04-08
WIP Standard
AIR1168/4B
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented.
2015-04-08
WIP Standard
ARP1907C
This Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
2015-04-06
WIP Standard
AS8090A
This specification covers general design and performance requirements for the mobility of towed ground support equipment. The complete mobility requirements for an item of towed aerospace ground equipment not specified herein shall be specified in the individual equipment specification (see 6.4).
2015-04-01
Journal Article
2015-01-9151
Eric S. Winkel, Daniel E. Toomey, Robert Taylor
Abstract Thoracolumbar vertebral fractures are most commonly due to compressive loading modes and associated with falls from height. Two injury metrics are generally referenced for assessing the potential for compressive thoracolumbar injury; the Dynamic Response Index (DRI) and the compressive load measured between the pelvis and lumbar spine using the Code of Federal Regulations (CFR) title 49 part 572 subpart B anthropomorphic test device (ATD). This study utilizes an ATD to investigate the injury mitigation potential of a variety of seat cushions during vertical impact in an unrestrained seated posture. ATD responses and DRI are reported for 65 vertical impacts with and without cushions from heights between 4 and 80 inches. The cushions investigated reduced ATD peak pelvic acceleration 63 +/− 11% and compressive lumbar load 42 +/− 9% on average.
2015-04-01
Magazine
Propulsion Fanjet Evolution - the Next Steps Composites Dry Drilling Composites Using Carbon Dioxide Cooling
2015-03-30
Technical Paper
2015-01-0124
Raksit Thitipatanapong, Sunhapos Chantranuwathana, Nuksit Noomwongs, Pornporm Boonporm, Petch Wuttimanop, Sanya Klongnaivai
Abstract The road accident is major concern around the world, so do Thailand. It is caused by three main factors: man, vehicle and infrastructure. The most important part that accounts the safety of vehicle is human. With experiences and careful driver, the accident could be diminished. So that the vehicle monitoring systems are the vital tools to screen out the inexperience or aggressive driver. In this paper, we state the problem about the dangerous driving behavior by monitoring lateral and longitudinal acceleration. For this purpose, the inertial measurement unit should be applied but it is inconvenient to install in the vehicle. Consequently, the vehicle monitoring system were developed based on novel consumer grade multi-satellite navigation receivers and were compared to Racelogic Video V-Box system in controlled condition tested track. The incidents were virtually detected and reviewed. The incident detection algorithm were proposed and tested alongside with receivers.
2015-03-27
Standard
J1819_201503
The scope of this SAE Recommended Practice is to promote compatibility between child restraint systems and vehicle seats and seat belts. Design guidelines are provided to vehicle manufacturers for certain characteristics of seats and seat belts, and to child restraint system (CRS) manufacturers for corresponding CRS features so that each can be made more compatible with the other. The Child Restraint System Accommodation Fixture, shown in Figure 1, is used to represent a CRS to the designers of both the vehicle interior and the CRS for evaluation of each product for compatibility with the other. The features of the accommodation fixture are described as each is used. A CRS accommodation template of transparent plastic, not shown, represents the side of the accommodation fixture for use in approximating its installed position on design drawings.
2015-03-27
Standard
J397_201503
This SAE Standard applies to operator protective structures which may commonly be a part of construction, forestry, mining, and industrial machines. To establish limits on deflection permissible during laboratory evaluations of certain operator protective structures, such as ROPS, FOPS, OPS, and FOG as defined in other SAE standards.
2015-03-26
WIP Standard
J3093
This Information Report addresses the design and performance specifications for a generic buck to be used in full-scale vehicle to pedestrian tests conducted to evaluate pedestrian dummy performance. Specifically, the buck is designed to mimic the impact response of the front end of a sedan within the small family car vehicle class during a collision with a pedestrian. The goal is to develop a generic buck with simplified geometry and a limited number of components made of clearly defined and readily available engineering materials to facilitate manufacturing and reproducibility. To ensure performance of the buck, it is specified that the buck mimics the peak crush, absorbed energy, and peak force corresponding to a sedan within the small family car vehicle class during a pedestrian impact.
2015-03-25
Article
The move into active safety systems is increasing the need for high-reliability software. AdaCore, a tool supplier that’s used in many aerospace applications, is responding to this demand with tools that can be used by the automotive industry.
2015-03-16
Article
Rain, wind, and visibility can influence driving safety and impact the bottom line for on- and off-highway fleets.
2015-03-13
Standard
J972_201503
Collision tests are conducted on automotive vehicles to obtain information of value in evaluation of structural integrity and in reducing the risk of occupant injuries. The deformation resulting from a moving rigid barrier impact is more severe at a given speed than that produced by using an actual vehicle, but is more readily reproducible than that occurring during vehicle to vehicle impacts. The purpose of this SAE Recommended Practice is to establish sufficient standardization of such moving barriers and moving barrier collision methods so that results of tests conducted at different facilities may be compared.
Viewing 241 to 270 of 16178

Filter