Display:

Results

Viewing 241 to 270 of 16189
2015-04-14
Journal Article
2015-01-1470
Takahiro Isshiki, Atsuhiro Konosu, Yukou Takahashi
Abstract Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
2015-04-14
Technical Paper
2015-01-1469
Yan Wang, Taewung Kim, Yibing Li, Jeff Crandall
Abstract Multibody human models are widely used to investigate responses of human during an automotive crash. This study aimed to validate a commercially available multibody human body model against response corridors from volunteer tests conducted by Naval BioDynamics Laboratory (NBDL). The neck model consisted of seven vertebral bodies, and two adjacent bodies were connected by three orthogonal linear springs and dampers and three orthogonal rotational springs and dampers. The stiffness and damping characteristics were scaled up or down to improve the biofidelity of the neck model against NBDL volunteer test data because those characteristics were encrypted due to confidentiality. First, sensitivity analysis was performed to find influential scaling factors among the entire set using a design of experiment.
2015-04-14
Technical Paper
2015-01-1467
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Munenori Shinada
Abstract Logistic regression analysis for accident cases of NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) clearly shows that the extent and the degree of pedestrian's lower extremity injury depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, bumper to knee ratio, bumper lead angle, age of the pedestrian, and posture of the pedestrian at the time of impact. The pedestrian population is divided in 3 groups, equivalent to small-shorter, medium-height and large-taller pedestrian with respect to the “pedestrian to BLE height-ratio” in order to quantify the degree of influence of lower leg injuries in each group. Large adult male finite element model (95th percentile male: 190 cm and 103 kg) was developed by morphing the Japan Automobile Manufacturers Association (JAMA) 50th percentile male.
2015-04-14
Technical Paper
2015-01-1217
Changhong Liu, Lin Liu
Abstract Many problems are associated with the large battery operation current, such as battery overheating, lithium plating, and mechanical structural instability of battery materials. All these problems may cause battery safety issues in fuel cell hybrid vehicles (FCHVs), e.g., battery explosions and thermal runaway have been reported and may cause public anxiety about FCHVs. Previous researches on FCHV power management strategy have focused on minimizing fuel consumption. But more attention needs to put on the battery current constraint for analysis of battery state of charge (SOC) and battery state of health (SOH). This research targets optimizing the FCHV battery pack operation within a safe current range through power management strategy to increase the safety of the battery pack while improving battery usage via SOC control. Battery SOH is also evaluated in the study.
2015-04-14
Technical Paper
2015-01-1341
Hisaki Sugaya, Yoshiyuki Tosa, Kazuo Imura, Hiroyuki Mae
Abstract The explicit methods analysis solver LS-DYNA was used to create technology for simulating airbag deployment and plastic airbag lid tear-away in the front passenger seat. The present study clarified the mechanical properties and the transitions in fracture pattern of the material at low temperature plastic this way, an appropriate modeling method was developed and the prediction accuracy of the simulation of airbag lid tear-away on deployment was increased. Tensile testing of the material was carried out where there were differences in thickness of the tear-away section and the fracture characteristics were determined. A material model was created by analyzing changes in fracture characteristics and collapse patterns, taking into consideration the effects of strain and strain rate localization on fracture strain as well as ductile-brittle fracture transition. Next, airbags were subjected to the impactor testing.
2015-04-14
Technical Paper
2015-01-1369
Kai Liu, Andres Tovar, Emily Nutwell, Duane Detwiler
Abstract This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
2015-04-14
Technical Paper
2015-01-1364
Tao Wang, LIangmo Wang, Yuanlong Wang, Xiaojun Zou, Fuxiang Guo
Abstract The design of aluminum foam reinforced thin-walled tubes has garnered much interest recently due to the high energy absorption capacity of these tubes. As a new kind of engineering composite material, aluminum foam can hugely increase the crashworthiness capacity without sacrificing too much weight. In this paper, axisymmetric thin-walled hollow tubes with four different kinds of cross-sections (circular, square, hexagonal and octagonal) are studied to assess their performance for crashworthiness problems. It is found that the tube with square cross-section has the best crashworthiness performance under axial impact. To seek optimal designs of square aluminum foam reinforced thin-walled tubes, a surrogate modeling technique coupled with a multi-criteria particle swarm optimization algorithm has been developed, to maximize specific energy absorption (SEA) and minimize peak crash force (PCF).
2015-04-14
Technical Paper
2015-01-1362
Chao Li, Il Yong Kim
Abstract A bumper system plays a significant role in absorbing impact energy and buffering the impact force. Important performance measures of an automotive bumper system include the maximum intrusions, the maximum absorbed energy, and the peak impact force. Finite element analysis (FEA) of crashworthiness involve geometry-nonlinearity, material-nonlinearity, and contact-nonlinearity. The computational cost would be prohibitively expensive if structural optimization directly perform on these highly nonlinear FE models. Solving crashworthiness optimization problems based on a surrogate model would be a cost-effective way. This paper presents a design optimization of an automotive rear bumper system based on the test scenarios from the Research Council for Automobile Repairs (RCAR) of Europe. Three different mainstream surrogate models, Response Surface Method (RSM), Kriging method, and Artificial Neural Network (ANN) method were compared.
2015-04-14
Technical Paper
2015-01-1387
Richard Young
Abstract This study revises the odds ratios (ORs) of secondary tasks estimated by Virginia Tech Transportation Institute (VTTI), who conducted the 100-Car naturalistic driving study. An independent and objective re-counting and re-analysis of all secondary tasks observed in the 100-Car databases removed misclassification errors and epidemiological biases. The corrected estimates of secondary task crude OR and Population Attributable Risk Percent (PAR%) for crashes and near-crashes vs. a random baseline were substantially lower for almost every secondary task, compared to the VTTI estimates previously reported. These corrected estimates were then adjusted for confounding from demographics, time of day, weekday-weekend, and closeness to junction by employing secondary task counts from a matched baseline from a later VTTI 100-Car analysis. This matched baseline caused most OR estimates to decline even further.
2015-04-14
Technical Paper
2015-01-0136
Ying Fan
Abstract In order to overcome the drawback that the traditional risk priority number method could not clearly make a risk priority sequence, a new analysis method of RPN was presented. Combined with loss costs, this method was based on FMEA. Several quantitative parameters such as servicing time and costs were introduced to replace the three parameters used in the traditional method. And it took loss costs caused by failure as the final risk priority number, instead of severity of effects, probability occurrence and difficulty detection. Finally, safety evaluation to work equipment and other critical systems of a forklift was processed as a case to illustrate this proposed method. The results showed that the results processed by the new method could be utilized to solve the problem that the RPN values couldn't be sorted.
2015-04-14
Technical Paper
2015-01-1434
Gary A. Davis
Abstract Martinez and Schlueter [6] described a three-phase model for reconstructing tripped rollover crashes, where the vehicle's path is divided into pre-trip, trip, and post-trip phases. Brach and Brach [9] also described this model and noted that the trajectory segmentation method for the pre-trip phase needed further validation. When a vehicle leaves a measurable yaw mark at the start of its pre-trip phase it might be possible to compare estimates from the three-phase model to those obtained using the critical speed method, and this paper describes Bayesian reconstruction of two such cases. For the first, the 95 percent confidence interval for the case vehicle's initial speed, estimated using the critical speed method, was (64 mph, 81 mph) while the 95 percent confidence interval via the three-phase model was (66 mph, 79 mph).
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
Abstract Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
2015-04-14
Technical Paper
2015-01-1756
Daniel E. Toomey, Debora R. Marth, William G. Ballard, Jamel E. Belwafa, Roger Burnett, Robert W. McCoy
Abstract For more than 30 years, field research and laboratory testing have consistently demonstrated that properly wearing a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. In severe rollover crashes, deformation to vehicle body structures can relocate body-mounted seat belt anchors altering seat belt geometry. In particular, roof pillar mounted shoulder belt anchors (“D-rings”) are subject to vertical and lateral deformation in the vehicle coordinate system. The ROllover Component test System (ROCS) test device was utilized to evaluate seat belt system performance in simulated severe rollover roof-to-ground impacts. A mechanical actuator was designed to dynamically relocate the D-ring assembly during a roof-to-ground impact event in an otherwise rigid test vehicle fixture. Anthropomorphic test device (ATD) kinematics and kinetics and seat belt tensions were compared between tests with and without D-ring relocation.
2015-04-14
WIP Standard
J2938
This SAE Recommended Practice provides test procedures, requirements, and guidelines for the methods of the measurement of lumen maintenance of LED devices (packages, arrays and modules). This document does not provide guidance or make any recommendation regarding predictive estimations or extrapolation for lumen maintenance beyond the limits of the lumen maintenance determined from actual measurements.
2015-04-14
Technical Paper
2015-01-1459
Lotta Jakobsson, Magnus Björklund, Anders Axelson
Abstract Vertical loading can cause thoracic and lumbar spine injuries to a car occupant. Crashes potentially causing occupant vertical loads include; rollover events or free flying events when the car lands on its wheels, and run off road events when the car goes into the ditch and collides with an embankment. To date, there is no standardized test method evaluating this occupant loading mechanism. The aim of this study was to develop test methods addressing vertical occupant loading for car occupants and to evaluate countermeasures for reduction of such loads. Based on real world run off road crashes, representative test track methods were developed. These complete vehicle test track methods were used to provide input to a simplified and repeatable rig test method. The rig test method comprises a dummy positioned in a seat attached to a frame and exposed to a vertical acceleration. Vertical pelvis acceleration is monitored, as an indication of potential loads through the spine.
2015-04-14
Technical Paper
2015-01-0493
Ying Wang, Ye Wang, You Qu, Sumin Zhang, Weiwen Deng
Abstract Vision-based Advanced Driver Assistance Systems has achieved rapid growth in recent years. Since vehicle field testing under various driving scenarios can be costly, tedious, unrepeatable, and often dangerous, simulation has thus become an effective means that reduces or partially replaces the conventional field testing in the early development stage. However, most of the commercial tools are lack of elaborate lens/sensor models for the vehicle mounted cameras. This paper presents the system-based camera modeling method integrated virtual environment for vision-based ADAS design, development and testing. We present how to simulate two types of cameras with virtual 3D models and graphic render: Pinhole camera and Fisheye camera. We also give out an application named Envelope based on pinhole camera model which refers to the coverage of Field-of-Views (FOVs) of one or more cameras projected to a specific plane.
2015-04-14
Technical Paper
2015-01-1417
Jeffrey Muttart
Abstract Controlled studies identified several factors that influence drivers' swerving when responding to in an emergency situation. Specifically, driver age, time-to-contact, amplitude of the steering action (steer within lane or swerving into the next lane), distraction, fatigue, natural lighting and available buffer space were identified as factors that influence steering behaviors. The goal of the current research was to identify the extent to which each factor changed swerving performances of drivers who were faced with a crash or near crash. Results from crashes and near crashes were obtained from the InSight (SHRP-2) naturalistic driving study. The results from the controlled studies and the results from the naturalistic driving research were consistent in many ways. Drivers engaged in a visual-manual secondary task were much younger than were the drivers who had no distracting secondary task.
2015-04-14
Technical Paper
2015-01-1450
Jeremy Daily, Andrew Kongs, James Johnson, Jose Corcega
Abstract The proper investigation of crashes involving commercial vehicles is critical for fairly assessing liability and damages, if they exist. In addition to traditional physics based approaches, the digital records stored within heavy vehicle electronic control modules (ECMs) are useful in determining the events leading to a crash. Traditional methods of extracting digital data use proprietary diagnostic and maintenance software and require a functioning ECM. However, some crashes induce damage that renders the ECM inoperable, even though it may still contain data. As such, the objective of this research is to examine the digital record in an ECM and understand its meaning. The research was performed on a Detroit Diesel DDEC V engine control module. The data extracted from the flash memory chips include: Last Stop Record, two Hard Brake events, and the Daily Engine Usage Log. The procedure of extracting and reading the memory chips is explained.
2015-04-14
Journal Article
2015-01-0567
Kenji Takada, Kentaro Sato, Ninshu Ma
Abstract In order to reduce automobile body weight and improve crashworthiness, the use of high-strength steels has increased greatly in recent years. An optimal combination of both crash safety performance and lightweight structure has been a major challenge in automobile body engineering. In this study, the Cockcroft-Latham fracture criterion was applied to predict the fracture of high-strength steels. Marciniak-type biaxial stretching tests for high-strength steels were performed to measure the material constant of the Cockcroft-Latham fracture criterion. Furthermore, in order to improve the simulation accuracy, local anisotropic parameters based on the plastic strain (strain dependent model of anisotropy) were measured using the digital image grid method and were incorporated into Hill's anisotropic yield condition by the authors. In order to confirm the validity of the Cockcroft-Latham fracture criterion, uniaxial tensile tests were performed.
2015-04-14
Technical Paper
2015-01-1352
Ashish Kumar Sahu, Abhijit Londhe, Suhas Kangde, Vishal Shitole
Abstract Body in White (BIW) is one of the major mass contributors in a full vehicle. Bending stiffness, torsional stiffness, durability, crashworthiness and modal characteristics are the basic performance parameters for which BIW is designed. Usually, to meet these parameters, a great deal of weight is added to BIW. Sensitivity analysis helps to identify the critical panels contributing to the performance while BIW optimization helps to reduce the overall mass of the BIW, without compromising on the basic performances. This paper highlights the optimization study carried out on the BIW of a Sports Utility Vehicle (SUV) for mass reduction. This optimization was carried out considering all the basic performance parameters. In the initial phase of BIW development, optimization helps to ensure minimum BIW weight rather than carrying out mass reduction post vehicle launch.
2015-04-14
Technical Paper
2015-01-1428
Shane Richardson, Andreas Moser, Tia Lange Orton, Roger Zou
Abstract Current techniques that can be used to evaluate and analyse lateral impact speeds of vehicle crashes with poles/trees are based on measuring the deformation crush and using lateral crash stiffness data to estimate the impact speed. However, in some cases the stiffness data is based on broad object side impacts rather than pole impacts. Some have argued that broad object side impact tests can be used for analysing narrow object impacts; however previous authors have identified the fallacy of this premise. Publicly available side pole crash test data is evaluated in terms of crush depth impact speed and impact energy for six general vehicle types. A range of simulated pole impact tests at various speeds and impact angles were conducted using LS-Dyna and PC-Crash. Publicly available Finite Element Vehicle models of a 1996 Ford Taurus, a 1994 Chevrolet C2500 and a 1997 Geo Metro (Suzuki Swift) were used, providing relationships among impact speeds, crush depths and impact angles.
2015-04-14
Technical Paper
2015-01-1472
Roberto Arienti, Carlo Cantoni, Massimiliano Gobbi, Giampiero Mastinu, Mario Pennati, Giorgio Previati
Abstract The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
2015-04-14
Journal Article
2015-01-1482
Bisheshwar Haorongbam, Anindya Deb, Clifford Chou
Abstract Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
2015-04-14
Technical Paper
2015-01-1614
Yijung Chen, Derek Board, Omar Faruque, Cortney Stancato, James Cheng, Nikhil Bolar, Sreevidhya Anandavally
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy (DOE) project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while achieving frontal crash test performance comparable to the baseline vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0 liter three-cylinder engine, leading to the potential for reduced environmental impact and improved fuel economy.
2015-04-14
Journal Article
2015-01-1433
R. Matthew Brach, Raymond M. Brach, Richard A. Mink
This paper presents a reconstruction technique in which nonlinear optimization is used in combination with an impact model to quickly and efficiently find a solution to a given set of parameters and conditions to reconstruct a collision. These parameters and conditions correspond to known or prescribed collision information (generally from the physical evidence) and can be incorporated into the optimized collision reconstruction technique in a variety of ways including as a prescribed value, through the use of a constraint, as part of a quality function, or possibly as a combination of these means. This reconstruction technique provides a proper, effective, and efficient means to incorporate data collected by Event Data Recorders (EDR) into a crash reconstruction. The technique is presented in this paper using the Planar Impact Mechanics (PIM) collision model in combination with the Solver utility in Microsoft Excel.
2015-04-14
Journal Article
2015-01-1379
Hideki Matsumura, Shinichiro Itoh, Kenichi Ando
Abstract Lithium-ion cells are being used in an increasing number of electric and hybrid vehicles. Both of these vehicle types contain many cells. Despite various safety measures, however, there are still reports of accidents involving abnormal heat, smoke, and fire caused by thermal runaway in the cells. If thermal runaway in one cell triggers that of another and thus causes thermal runaway propagation, this can lead to rupture of the battery pack, car fire, or other serious accidents. This study is aimed to ensure the safety of vehicles with lithium-ion cells by clarifying such accident risks, and so we investigated the process of thermal runaway propagation. In the experiment, we created a battery module made of seven laminate-type cells tightly stacked one on another. Then, we induced thermal runaway in one of the cells, measured the surface temperatures of the cells, and collected video data as the process developed. As a result, all of the seven cells underwent thermal runaway.
2015-04-14
Journal Article
2015-01-1381
Jason P. Huczek, R. Rhoads Stephenson
Abstract The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis.
2015-04-14
Journal Article
2015-01-1383
Andrew Blum, Richard Thomas Long
Abstract Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
2015-04-14
Journal Article
2015-01-1386
Devin SJ Caplow-Munro, Helen Loeb, Venk Kandadai, Flaura Winston
Abstract Inadequate situation awareness and response are increasingly recognized as prevalent critical errors that lead to young driver crashes. To identify and assess key indicators of young driver performance (including situation awareness), we previously developed and validated a Simulated Driving Assessment (SDA) in which drivers are safely and reproducibly exposed to a set of common and potentially serious crash scenarios. Many of the standardized safety measures can be calculated in near real-time from simulator variables. Assessment of situation awareness, however, largely relies on time-consuming data reduction and video coding. Therefore, the objective of this research was to develop a near real-time automated method for analyzing general direction and location of driver's gaze in order to assess situation awareness.
2015-04-14
Technical Paper
2015-01-1406
Mikael Ljung Aust, Lotta Jakobsson, Magdalena Lindman, Erik Coelingh
Abstract This paper first discusses the advancement and challenges in the areas of developing Collision Avoidance Systems, or CAS. CAS have been on the market for a decade, and their development has been rapid. Starting with forward collision warning with brake support, targeting vehicles moving in the same direction in front of the car, CAS now cover pedestrians and cyclists in front of the car as well as vehicles standing still and even some situations of approaching vehicles in crossings. This development up to date is described and discussed according to the challenge areas of detection, decision strategy and intervention strategy. Next, the paper discusses assessment of system effects on driving safety. Numerous studies have tried to predict the effect of various CAS, and the real world effect of these systems has been shown to be significant.
Viewing 241 to 270 of 16189

Filter