Display:

Results

Viewing 241 to 270 of 15793
Technical Paper
2014-04-01
Patrick Galipeau-Belair, Srikanth Ghantae, David Critchley, Sarathy Ramachandra, Moustafa EL-Gindy
Abstract This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH). Since the tractor-trailers and straight trucks utilize different structural components, separate concepts must be generated to accommodate each individual application.
Technical Paper
2014-04-01
Matthew Wood, Vivek Shekhawat, Tate Kubose, Rajeev Kelkar
Abstract Vehicle stiffness data are often used in crush energy analyses, in conjunction with conservation of momentum calculations, to compute vehicle speeds at impact for accident reconstruction purposes. The vehicle stiffness data are typically obtained from standardized impact tests, such as from the New Car Assessment Program (NCAP) or from Federal Motor Vehicle Safety Standard (FMVSS) tests. Ideally, these data are most applicable when obtained from a sister or clone subjected to an impact similar to the accident. However, when vehicle-specific data are not available, a common alternative is to use crush stiffness values for a generic vehicle population from the published literature. These publications are limited in number and, depending on the user's requirements, may have some inherent limitations. For example, use of the generic values may not readily apply to a recently manufactured subject vehicle involved in a side or rear-end impact. Of the currently published studies providing generic class stiffness data, one publication covers vehicles manufactured in the 1980's and 1990's, while another covers frontal impacts over 3 decades.
Technical Paper
2014-04-01
William N. Newberry, Stacy Imler, Michael Carhart, Alan Dibb, Karen Balavich, Jeffrey Croteau, Eddie Cooper
Abstract It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers. In evaluating rollover occupant protection system performance, various studies have recognized and demonstrated the upward and outward excursion of belted occupants that occurs during the airborne phase of a rollover, as well as excursion from vehicle-to-ground impacts.
Technical Paper
2014-04-01
Thomas Rush, Jay Przybyla, Daniel Melcher, Christian Sax
Abstract Numerous mathematical models for reconstructing vehicle-pedestrian collisions have been developed over the years utilizing common sources of physical evidence. As sources of video data recording proliferate, new sources of physical evidence are now available in some cases. This paper presents an expanded methodology for analyzing video footage of actual pedestrian collisions, including both static and dynamic camera positions. Each video was analyzed using digitizing motion analysis software to quantify the pre-impact and post-impact trajectories and speeds of the vehicle, the pedestrian, and the camera position for each collision. The relationship between vehicle speed and pedestrian throw distance has frequently been used in collision reconstruction to answer questions regarding vehicle/pedestrian impacts. Several approaches to reconstructing vehicle/pedestrian collisions have been developed and published in the literature using equations derived from empirical models, principles of mechanics, or hybrid approaches.
Technical Paper
2014-04-01
James Funk, Enrique Bonugli, Herbert Guzman, Mark Freund
It has been proposed that low speed collisions in which the damage is isolated to the bumper systems can be reconstructed using data from customized quasistatic testing of the bumper systems of the involved vehicles. In this study, 10 quasistatic bumper tests were conducted on 7 vehicle pairs involved in front-to-rear collisions. The data from the quasistatic bumper tests were used to predict peak bumper force, vehicle accelerations, velocity changes, dynamic combined crush, restitution, and crash pulse time for a given impact velocity. These predictions were compared to the results measured by vehicle accelerometers in 12 dynamic crash tests at impact velocities of 2 - 10 mph. The average differences between the predictions using the quasistatic bumper data and the dynamic crash test accelerometer data were within 5% for bumper force, peak acceleration, and velocity change, indicating that the quasistatic bumper testing method had no systematic bias compared to dynamic crash testing.
Technical Paper
2014-04-01
Mark William Arndt, John Wiechel
Abstract Assuming rigid body motion, recorded acceleration and recorded roll rates at the center of gravity, equations are used to calculate the local three-dimensional accelerations at hypothetical seating positions' Emergency Locking [seat belt] Retractors (ELR) during a steer induced rollover crash. For a threshold of 0.7 g, results demonstrated that intervals in the vehicle's response that may cause the ELR's inertial sensor to move into a neutral zone were limited to localized high magnitude negative vertical acceleration events during the rollover segment with a median duration of 4 ms, average duration of 4.8 ms and a maximum calculated duration of 31.7 ms. Changing the threshold to 0.35 g reduced the interval count by 70 percent and maximum duration by approximately 50 percent. Since a retractor in an interval when an inertial sensor may move into a neutral position will unlock only after belt retraction and at an acceleration ratio below its threshold, the duration that a retractor may be unlocked was probably less than the duration of an interval when a vehicle's response would allow an inertial sensor to move into a neutral zone.
Technical Paper
2014-04-01
Enrique Bonugli, Jeffrey Wirth, James Funk, Joseph Cormier, Herbert Guzman, Lisa Gwin, Mark Freund
This is the complete manuscript and replacement for SAE paper 2014-01-0482, which has been retracted due to incomplete content. This paper reports on 76 quasi-static tests conducted to investigate the behavior of road vehicle bumper systems. The tests are a quasi-static replication of real world low speed collisions. The tests represented front to rear impacts between various vehicles. Force and deflection were captured in order to quantify the stiffness characteristics of the bumper-to-bumper system. A specialized test apparatus was constructed to position and load bumper systems into each other. The purpose was to replicate or exceed damage that occurred in actual collisions. The fixture is capable of positioning the bumpers in various orientations and generates forces up to 50 kips. Various bumper-to-bumper alignments were tested including full overlap, lateral offset, and override/underride configurations. Force and displacement were recorded and the data was analyzed to develop system stiffness and crush parameters.
Technical Paper
2014-04-01
Richard R. Ruth, Ada Tsoi
Abstract Kia and Hyundai released publicly available tools in the spring of 2013 to read model year (MY) 2013 vehicle event data recorders (EDRs). By empirical testing, this study determined the tools also read data from some 2010-2012 models as EDRs were phased in by the manufacturer. Fifty-four (54) MY 2010-2012 airbag control module EDRs from the National Highway Traffic Safety Administration's (NHTSA) New Car Assessment Program (NCAP) crash tests were downloaded direct-to-module. The vehicles analyzed were exposed to frontal, side moving deformable barrier (MDB), and side pole tests. The EDR data was compared to the reference instrumentation for speed and Delta V data. Other data elements were also tabulated but are not evaluated for accuracy because they were not fully exercised during the crash tests, the reference instrumentation was not available, or they were outside the scope of this paper.
Technical Paper
2014-04-01
Ada Tsoi, Nicholas Johnson, H. Gabler
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations. For equipped vehicles that reported side torso, side curtain, and frontal airbag deployment information, all vehicles recorded the correct status.
Technical Paper
2014-04-01
Darren Sexton, Antonio Priore, John Botham
The functional safety concept definition is the backbone of a project's safety process; poor choices made at this stage can have significant impact. A weak concept may result in over-engineering of systems; late re-work when missing safety requirements are eventually uncovered at advanced stages of the development process; disagreements within the supply chains regarding responsibility for safety mechanisms; or, of most concern, release of an unsafe product. Despite this importance, ISO 26262 states that the functional safety requirements are to be derived from the safety goals (top-level safety requirements) and only notes that safety analysis might be used to support this task, giving no further guidance on how this might be done. The automotive industry's typical time pressures mean that being able rapidly to produce an initial safety concept is critical if it is to influence the system architecture and procurement decisions. At the same time, a high degree of confidence that the functional safety requirements are effective is necessary.
Technical Paper
2014-04-01
Jean Razafiarivelo, Youssef Bouri
In the sensitive automotive applications like the safety restraint systems (SRS), twisted lines can be used to link the components of the system because of their property of reduction of the electromagnetic interference (EMI) coupling. Compared to the parallel lines, the twisted lines present the drawback to consume more copper in their manufacturing due to the greater length of their conductors. A parametric study based on the numerical modeling and the measurement of twisted lines is conducted in order to analyze the effect of the twisting pitch and of the untwisted part of these lines on the level of EMI coupling. This study will enable to optimize these two parameters in order to reduce the level of EMI coupling as well as the length of the conductors of the lines.
Technical Paper
2014-04-01
Thang Nguyen, Stuart Wooters
As software (SW) becomes more and more an important aspect of embedded system development, project schedules are requiring the earlier development of software simultaneously with hardware (HW). In addition, verification has increasingly challenged the design of complex mixed-signal SoC products. This is exacerbated for automotive safety critical SoC products with a high number of analogue interfaces (sensors and actuators) to the physical components such as an airbag SoC chipset. Generally, it is widely accepted that verification accounts for around 70% of the total SoC development. Since integration of HW and SW is the most crucial step in embedded system development, the sooner it is done, the sooner verification can begin. As such, any approaches which could allow verification and integration of HW/SW to be deployed earlier in the development process and help to decrease verification effort, (e.g.: accelerate verification runs) are of extreme interest. In the described context, this paper addresses not only the design and verification challenges of such embedded systems but also proposes a new development, verification and validation workflow using an FPGA-based SoC Emulation System with synthesizable analogue functional stubs and a risk minimizing analogue test chip, which emulates and partially implements respective mixed-signal behavior of the ASIC SoC hardware.
Technical Paper
2014-04-01
Tobias Schmidt, Shan Jin, Jens Rogalli, Thorsten Rogier, Hartmut Pohlheim, Ingo Stürmer
Requirements-based functional testing of model-based embedded software is a crucial requirement of the ISO 26262 safety standard for passenger cars [1]. Test assessment of requirements-based test cases is a laborious task and checking test results manually is prone to error. The intent of this paper is as follows: We introduce a method for requirements-based testing, which allows testing and automatic evaluation of single as well as several (grouped) requirements with one test sequence. Within a large-scale industrial project we have already shown that our new approach reduces testing expenditures and susceptibility to errors. Within this paper we shall present a method which facilitates the fulfillment of requirements traceability stipulated by ISO 26262. This method supports automated test case generation from test specifications, which then can be executed and assessed by a test tool automatically. The combination of these two methods in an efficient testing framework results in a significant reduction of testing expenditures and considerable increase in test coverage.
Technical Paper
2014-04-01
Masashi Takahashi, Masayuki Takeuchi, Kiyotaka Maeda, Shouma Nakagawa
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO. The experiment results did not reveal any reason to treat vehicles with lithium-ion batteries differently from gasoline vehicles with regard to safety measures against harmful gases that may be generated around the burning vehicle.
Technical Paper
2014-04-01
Tau Tyan, Jeff Vinton, Eric Beckhold, Xiangtong Zhang, Jeffrey Rupp, Nand Kochhar, Saeed Barbat
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy. Recently, more advanced steering column designs with adaptive features, mechanically or pyrotechnically activated, have been introduced for different crash conditions, including different crash severity, occupant mass/size, seat position and seatbelt usage.
Technical Paper
2014-04-01
Tau Tyan, Jeff Vinton, Eric Beckhold, Xiangtong Zhang, Jeffrey Rupp, Nand Kochhar, Saeed Barbat
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Technical Paper
2014-04-01
Xin Xie, Yaqian Zheng, Xiaona Li, Bernard Sia, Ping Zhong, Guobiao Yang, Lianxiang Yang
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference. The spatial frequency carrier is introduced by tilting one of the mirrors in the Michelson-Interferometer.
Technical Paper
2014-04-01
Joyce Lam, Nate J. Dennis, Jeff Dix, Martin Lambrecht, Ryuuji Ootani
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively. In this paper, the authors present a case study in which an exemplar mid-size sedan was subjected to all four impact conditions.
Technical Paper
2014-04-01
Vijay Somandepalli, Kevin Marr, Quinn Horn
As lithium-ion cells and systems become larger and more ubiquitous in automotive applications, fire and explosion hazards that are rare or non-existent in smaller systems may exist in these larger systems. One potential hazard can occur when flammable gases emitted from a lithium-ion cell failure accumulate in or around automobiles and are ignited by electrical activity or by the cells themselves and result in a fire or explosion. In some instances, the safety aspects related to fires and explosions protection of electric vehicles and hybrid vehicles using these large energy storage battery packs are a significant challenge to address. This paper describes and characterizes the combustion and explosion hazards that can occur when a lithium ion battery pack fails and goes into thermal runaway in an enclosed space. Metrics such as gas composition, maximum overpressure, rate of pressure rise, and flammability limits are described. This information can be helpful to battery and pack designers, vehicle designers, first responders and emergency personnel in developing strategies to mitigate and prevent explosion hazards from the use of battery packs in automobiles and other fields where large battery packs are used.
Technical Paper
2014-04-01
James Nelsen, Chang Su Seo
Abstract This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
Technical Paper
2014-04-01
Greg Webster, Harold Clyde, Barry Hare, Mark Jakstis, Robert Landis, Lance Lewis, Ryan Buetzer
Abstract Four Toyota vehicles were tested in 12 test conditions to compare the Event Data Recorder (EDR) results with data gathered from onboard test instrumentation and the test protocol. The four Toyota vehicles tested were 2013 Model Year (MY) vehicles with EDRs that meet 49 CFR CH. V Part 563. While the previous Toyota EDR versions captured four pre-crash parameters, this generation Toyota EDR (12EDR) includes additional operating parameters and a faster sampling rate before the event trigger, including additional parameters not required by Part 563. The main focus of this research was to analyze the recording of the following driver inputs: accelerator pedal application, brake pedal application, steering wheel angle, and cruise control activation. The EDR-recorded inputs were compared with the values on the HS-CAN. The test results indicate that the 12EDR accurately recorded these driver inputs.
Technical Paper
2014-04-01
Roger Bortolin, Matthew Arbour, James Hrycay
Abstract Whether large or small, a truck fleet operator has to know the locations of its vehicles in order to best manage its business. On a day to day basis loads need to be delivered or picked up from customers, and other activities such as vehicle maintenance or repairs have to be routinely accommodated. Some fleets use aftermarket electronic systems for keeping track of vehicle locations, driver hours of service and for wirelessly text messaging drivers via cellular or satellite networks. Such aftermarket systems include GPS (Global Positioning System) technology, which in part uses a network of satellites in orbit. This makes it possible for the fleet manager to remotely view the location of a vehicle and view a map of its past route. These systems can obtain data directly from vehicle sensors or from the vehicle network, and therefore report other information such as fuel economy. The fleet manager can receive alerts when high-level brake applications occur, which could be an indication of tailgating or aggressive driving behavior.
Technical Paper
2014-04-01
Qiang Chen, Yong Chen, Ola Bostrom, Yehong Ma, Eryong Liu
Abstract The aim of the study was to investigate the difference between car-to-e-bikes and car-to-pedestrian accidents. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2013 for pedestrians and e-bikes struck by car, van and SUV fronts, which resulted in 104 pedestrian and 85 e-bike cases where information was sufficient for in-depth analysis. Reconstruction by PC-Crash was performed for all of the sampled cases. Pre-crash parameters were calculated by a MATLAB code. Focus was on prototypical accident scenarios and causes; speed as well as possible prevention countermeasures. It has been shown that traffic light violations, road priority violations, and unsure safety (these situations included misjudgments, unpreparedness, proximity to other road users, inappropriate speeds, etc.…) are the main causes in both the VRU groups. Distinctions were found for aspects of car collision speed, accident scenario, distribution of head contact points and so on. Pre-impact braking/warning systems could help drivers take pre-crash measures and mitigate crash severity, but a larger field of view (FOV) for sensors is of greater necessity for e-bikers than for pedestrians.
Technical Paper
2014-04-01
Mengmeng Yu, Guanglin Ma
In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper
2014-04-01
Vijay Somandepalli, Hubert Biteau
The emergence of Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) as a viable means of transportation has been coincident with the development of lithium-ion (Li-ion) battery technology and electronics. These developments have enabled the storage and use of large amounts of energy that were previously only possible with internal combustion engines. However, the safety aspects of using these large energy storage battery packs are a significant challenge to address. In addition, the rapid advances in electrode and electrolyte materials for Li-Ion batteries have made comparisons and ranking of safety parameters difficult because of the substantial variations in cell designs. In this work, we outline a method for quantifying the thermal safety aspects of Li-ion battery technologies using a Cone Calorimeter. The Cone Calorimeter is a suitable tool to measure and quantify critical information such as the heat release rate and total energy released from the combustion of organic material.
Technical Paper
2014-04-01
Tao Zhang, Helder Antunes, Siddhartha Aggarwal
Abstract As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Technical Paper
2014-04-01
Satoshi Otsuka, Tasuku Ishigooka, Yukihiko Oishi, Kazuyoshi Sasazawa
Abstract In-vehicle networks are generally used for computerized control and connecting information technology devices in cars. However, increasing connectivity also increases security risks. “Spoofing attacks”, in which an adversary infiltrates the controller area network (CAN) with malicious data and makes the car behave abnormally, have been reported. Therefore, countermeasures against this type of attack are needed. Modifying legacy electronic control units (ECUs) will affect development costs and reliability because in-vehicle networks have already been developed for most vehicles. Current countermeasures, such as authentication, require modification of legacy ECUs. On the other hand, anomaly detection methods may result in misdetection due to the difficulty in setting an appropriate threshold. Evaluating a reception cycle of data can be used to simply detect spoofing attacks. However, this may result in false detection due to fluctuation in the data reception cycle in the CAN. We propose the “delayed-decision cycle detection” method for improving a conventional cycle detection method, which does not require modification of legacy ECUs, detects intrusions with a low misdetection rate, and prevents intrusions.
Technical Paper
2014-04-01
Jesse Schneider, Graham Meadows, Steven R. Mathison, Michael J. Veenstra, Jihyun Shim, Rainer Immel, Morten Wistoft-Ibsen, Spencer Quong, Manfred Greisel, Timothy McGuire, Peter Potzel
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions. It defines the fueling protocol and operational fueling parameters that ensure both station and vehicle maintain their safety limits (e.g.
Technical Paper
2014-04-01
Se Jin Park, Seung Nam Min, Murali Subramaniyam, Heeran Lee, Dong Gyun Kim, Cheol Pyo Hong
Abstract Vibration is both a source of discomfort and a possible risk to human health. There have been numerous studies and knowledge exists regarding the vibrational behavior of vehicle seats on adult human occupants. Children are more and more becoming regular passengers in the vehicle. However, very little knowledge available regarding the vibrational behavior of child safety seats for children. Therefore, the objective of this study was to measure the vibrations in three different baby car seats and to compare these to the vibrations at the interface between the driver and the automobile seat. The test was performed on the National road at the average speed of 70 km/h and acceleration levels were recorded for about 350 Sec (5.83 min). One male driver considered as an adult occupant and a dummy having a mass of 9 kg was representing one year old baby. Four accelerometers were used to measure the vibration. All measured accelerations were relative to the vertical direction. Vibration Analysis Toolset (VATS) was used for time domain analysis.
Technical Paper
2014-04-01
Karsten Schmidt, Peter Tröger, Hans-Martin Kroll, Thomas Bünger, Florian Krueger, Christian Neuhaus
Future automotive systems will be connected with other vehicles and information systems for improved road safety, mobility and comfort. This new connectivity establishes data and command channels between the internal automotive system and arbitrary external entities. One significant issue of this paradigm shift is that formerly closed automotive systems now become open systems that can be maliciously influenced through their communication interfaces. This introduces a new class of security challenges for automotive design. It also indirectly impacts the safety mechanisms that rely on a closed-world assumption for the vehicle. We present a new security analysis approach that helps to identify and prioritize security issues in automotive architectures. The methodology incorporates a new threat classification for data flows in connected vehicle systems.
Viewing 241 to 270 of 15793

Filter

  • Article
    476
  • Book
    116
  • Collection
    42
  • Magazine
    615
  • Technical Paper
    10002
  • Subscription
    4
  • Standard
    4538