Criteria

Text:
Topic:
Display:

Results

Viewing 211 to 240 of 15836
2014-04-10
Article
The system uses specific Sport Mode algorithms with modules from the high-speed CAN data bus, including those for adaptive cruise control, forward facing camera, all-wheel drive, shift-by-wire, electric power steering, transmission, and powertrain.
2014-04-10
Article
Dangers from malware, including ransom demands, must be pro-actively avoided as industry and owners enter era of connected cars. For all their conveniences, telematics could pose ugly series of risks that will require new approaches to prevent, explains Cisco Systems scientist to SAE Congress attendees. Vulnerabilities are in many areas, including the OBD system.
2014-04-10
Book
This is the electronic format of the Journal.
2014-04-09
Standard
J89_201404
This SAE Recommended Practice encompasses the significant factors which determine the effectiveness of a seat system in limiting spinal injury during vertical impacts between the rider and the snowmobile seat system. The document is intended to provide a tool for the development of safer snowmobile seats. It is recognized that the seat is only a portion of the entire vehicle protective suspension system. It is, however, usually required that the seat serve as added protection to the suspension system, since the latter may "bottom out" during a severe impact. The term "seat" refers to the occupant-supporting system not normally considered part of the vehicle suspension or frame system. In some cases, it may include more than the foam cushion. This document provides the minimum requirements for performance of a general seat system, and a description of specific means of evaluating the shock-absorbing characteristics of foam seat cushions using a specific testing procedure and a companion seat evaluation chart.
2014-04-05
Article
According to Lord's Andrew J. Winzenz, companies wanting to compete in the industrial market must expand their expertise beyond components to system-level design.
2014-04-03
Article
A new occupant-protection technology from TRW Automotive Holdings Corp. has the passenger-seat airbag deploying from the headliner instead of the dashboard. It is being launched on the Citroën C4 Cactus.
2014-04-03
WIP Standard
ARP6503
This document provides guidance for in-flight rest facilities provided for use by cabin crew on commercial transport aircraft.. This document is applicable to dedicated cabin crew rest facilities. Passenger seats used to provide “cabin crew rest facilities” are not within the scope of this document.
2014-04-03
WIP Standard
EIASTD4899B
This document defines the requirements for developing an Electronic Components Management Plan (ECMP), hereinafter also called the Plan, to assure customers and regulatory agencies that all of the electronic components in the equipment of the Plan owner are selected and applied in controlled processes compatible with the end application; and that the Technical Requirements detailed in clause 5.0 are accomplished. In general the owners of a complete Electronic Components Management Plan are avionics equipment manufacturers.
2014-04-03
Standard
ARP5647A
This SAE Aerospace Recommend Practice (ARP) is intended to identify both safety related best practices and unique design considerations of metal halides High Intensity Discharge (HID) lamps and power supplies in aircraft applications.
2014-04-02
WIP Standard
J284
This SAE Recommended Practice presents the general uses, limitations on use, and appearance of the safety alert symbol.
2014-04-02
WIP Standard
AIR1059D
This document provides guidance concerning the maintenance and serviceability of oxygen cylinders beginning with the quality of oxygen that is required, supplemental oxygen information, handling and cleaning procedures, transfilling and marking of serviced oxygen assemblies. This document attempts to outline in a logical sequence oxygen quality,serviceability and maintenance of oxygen cylinders.
2014-04-01
Article
All new vehicles under 10,000 lb will be required to have rearview camera technology under a final rule issued March 28 by NHTSA (U.S. National Highway Traffic Safety Administration). The rule applies to vehicles ranging from passenger cars to trucks and buses (any vehicle under 10,000 lb) built on or after May 1, 2018.
2014-04-01
Collection
Active Safety & Advanced Driver Assistance Systems help prevent accidents or mitigate accident severity. Some of these safety systems provide alerts to the driver in critical situations, while others respond to threats by automatically braking and steering the vehicle to avoid crashes. This technical paper collection covers the latest technologies in active safety and driver assistance systems.
2014-04-01
Collection
This technical paper collection covers papers with an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs.
2014-04-01
Collection
This technical paper collection focuses on current developments in the fields of vehicle fire science, statistics, risks, assessment and mitigation. Papers addressing vehicle design, live-fire tests and fire investigation issues applicable to traditional, electric and alternatively fueled vehicles are included.
2014-04-01
Collection
This technical paper collection focuses on cybersecurity for cyber-physical vehicle systems. Topics include: design, development and implementation of security-critical cyber-physical vehicle systems, cybersecurity design, development, and implementation strategies, analysis methodologies, process and life-cycle management, comparisons of system safety and cybersecurity, etc. Application areas include: security-critical automotive systems as well as other security-critical ground vehicle and aviation systems.
2014-04-01
Magazine
Methodology developed for safer hood design The methodology enables material selection and design optimization of energy absorbers for pedestrian protection based on a simple laboratory test and FE model, eliminating the need for extensive vehicle testing. Developing a winning formula It's been 20 years since the University of Michigan won a Formula SAE championship. Sick of getting smoked in recent years by top teams from Germany and the U.S., MRacing is going "big aero" for a better crack at the 2014 crown.
2014-04-01
Technical Paper
2014-01-0939
Sanjeev Kumar, Deepak Katyal, Amit Singh
Abstract Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests. Finally a cost and weight effective countermeasure package which involves the modification in Body structure and Restraint system has been developed in order to comply with the ECE R-94 offset crash regulation.
2014-04-01
Technical Paper
2014-01-0961
Alan R. Wedgewood, Patrick Granowicz, Zhenyu Zhang
Abstract Materials used in automotive components play a key role in providing crash safety to passengers and pedestrians. DuPont's lightweight hybrid material technology, which combines injection molded fiber reinforced plastics with drape molded woven composite materials, provides safety engineers with stiff energy absorbing alternatives. In an effort to validate the hybrid material's crash performance while avoiding expensive crash testing, numerical tools and methodologies are applied in evaluation of a hybrid composite test beam. Multi-scale material models capturing nonlinear strain-rate dependency, anisotropic characteristics, and failure criteria, are calibrated on a fiber reinforced plastic and a woven fabric. The fiber orientation and warp/weft angles were extracted from injection and drape molding simulation. The material laws and orientation information are coupled in a single finite element analysis to predict the performance of the hybrid composite beam under a dynamic three point bending load.
2014-04-01
Technical Paper
2014-01-0859
Haizhen Liu, Weiwen Deng, Changfu Zong, Jian Wu
Abstract This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy. From the simulation results, it is shown that this active brake control strategy can not only ensure the flat tire vehicle stability, but also slow down the vehicle with a safe speed and for a shorter distance.
2014-04-01
Technical Paper
2014-01-0857
Erdem Uzunsoy, Emmanuel Bolarinwa, Oluremi Olatunbosun, Rui He
Abstract Sloped medians provide a run-off area for errant vehicles so that they can be safely stopped off-road with or without barriers placed in the sloped median. However, in order to optimize the design of sloped medians and the containment barriers, it is essential to accurately model the behavior of vehicles on such sloped terrain surfaces. In this study, models of a vehicle fleet comprising a small sedan and a pickup truck and sloped terrain surface are developed in CarSim™ to simulate errant vehicle behavior on sloped median. Full-scale crash tests were conducted using the vehicle fleet driven across a 9.754 meters wide median with a 6:1 slope at speeds ranging from 30 to 70 km/h. Measured data such as the lateral accelerations of the vehicle as well as chassis rotations (roll and pitch) were synchronized with the vehicle motion obtained from the video data. The measured responses were compared with responses obtained from simulation in CarSim™ to validate the vehicle and slope terrain models.
2014-04-01
Technical Paper
2014-01-0794
Yuanyuan Zhang, Shen Wu, Yuliang Shi, Jingang Tu, Jingguo Hu
Abstract The design of front rail is very important to vehicle safety performance. The test and CAE analysis are commonly used methods for design on the component level. Based on experience of impact test designed to simulate the performance of rail in vehicle rigid wall frontal impact, an inclined test is designed to simulate the performance of rail in vehicle offset deformable barrier impact. Two LS-DYNA computer simulation models are established including the effects of plastic strain rate, spot-weld failure, and stamping hardening. The deformation and mechanical properties are studied. The simulation results are correlated to the component tests very well in both cases. The usual impact test and inclined impact test for component rail can represent the main features of the rail performances in the vehicle frontal impact and offset impact respectively. Both of the simulation method and the component test method can support the early stage design for vehicle crash safety.
2014-04-01
Technical Paper
2014-01-0806
Shweta Rawat, Soumya Kanta Das
Abstract With the ever increasing emphasis on vehicle occupant safety, the safety of pedestrians is getting obscured behind the A-pillars that are expanding in order to meet the federal roof crush standards. The serious issue of pillar blind spots poses threats to the pedestrians who easily disappear from driver's field of view. To recognize this blinding danger and design the car around the driver's eye, this paper proposes the implementation of Aluminum Oxynitride marked under name AlON by Surmet Corporation for fabrication of A-pillars that can allow more than 80% visibility through them. AlON is a polycrystalline ceramic with cubic spinel crystal structure and is composed of aluminum, oxygen and nitrogen. With hardness more than 85% than sapphire, its applications range from aerospace to defense purposes which qualify it in terms of strength and thus imply that it can be conveniently used as A-pillars in vehicles. Furthermore, it possesses characteristics of being bonded to metals as well.
2014-04-01
Technical Paper
2014-01-0819
Qiang Yi, Stanley Chien, David Good, Yaobin Chen, Rini Sherony
Abstract According to pedestrian crash data from 2010-2011 the U.S. General Estimates System (GES) and the Fatality Analysis Report System (FARS), more than 39% of pedestrian crash cases occurred at night and poor lighting conditions. The percentage of pedestrian fatalities in night conditions is over 77%. Therefore, evaluating the performance of pedestrian pre-collision systems (PCS) at night is an essential part of the pedestrian PCS performance evaluation. The Transportation Active Safety Institute (TASI) of Indiana University-Purdue University Indianapolis (IUPUI) is conducting research for the establishment of PCS test scenarios and procedures in collaboration with Toyota's Collaborative Safety Research Center. The objective of this paper is to describe the design and implementation of a reconfigurable road lighting system to support the pedestrian PCS performance evaluation for night road lighting conditions. First, the test conditions of the road lighting (light intensity and uniformity) are generated by combining recommendations from road lighting design standards and the average measured lighting levels at various crash locations.
2014-04-01
Technical Paper
2014-01-0810
Youmei Zhao
The Hybrid III 50th male dummy is widely used in front impact crash tests in the world to evaluate the vehicle safety performance. The chest impact calibration test should be conducted after certain amount of crash tests to ensure that the dummy has the right performance during the crash tests. The impact velocity in the current chest calibration tests is 6.71 m/s and the chest displacement corridor is 63.5 mm to 72.6 mm, which was based on the cadaver tests carried out in 1970s. After over forty years' development, the vehicle safety has been improved significantly with applications of seat belt and airbag technologies. In the European and China new car assessment program (ENCAP and CNCAP), the higher performance limit for the front impact dummy chest compression is 22mm and the lower performance limit is 50 mm, which is much lower than the dummy chest calibration corridor. In this paper, the dummy rib assembly structure is analyzed and the rib impact FEA simulation was also conducted.
2014-04-01
Technical Paper
2014-01-0811
Horst Lanzerath, Niels Pasligh
Abstract Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient. Therefore new FEM crash methods for structural adhesives have been investigated and validated with the help of test results.
2014-04-01
Technical Paper
2014-01-0826
Hang Yin, Weiming Zeng, Guobiao Yang, Songgang Li
Abstract When an object was subjected an impact loading, stress wave was produced in the object. Studying the regularity of stress-wave propagation was significant to the study of objects subjected to impact loading. When stress wave travelled in the object, principal stress on free boundary was useful to theoretical analysis and calculation. In this article, a new kind of dynamic photoelastic apparatus was used. Isochromatic and isoclinic of the object subjected to impact loading could be obtained combining dynamic photoelastic experiment and related test equipment. By analyzing the isoclinic, there would be a conclusion that the angle between the isoclinic and the free boundary was not 0°or 90°. So the values of the two principal stress on the boundary were all not 0. The result obtained from the electrometric method came to the same conclusion. Analysis showed the result of dynamic photoelastic method was compatible with the result of electrometric method. So the method in this article was feasible and accurate.
2014-04-01
Technical Paper
2014-01-1028
Venkat Pisipati, Srikanth Krishnaraj, Edgar Quinto Campos
Abstract Motor vehicle safety standards are getting to be more demanding with time. For automotive interiors, instrument panel (IP) head impact protection is a key requirement of the Federal Motor Vehicle Safety Standard (FMVSS) 201. To ensure compliance of this requirement, head impact tests are conducted at 12 and 15 mph for performance verification. Computer simulation has become more prevalent as the primary development tool due to the significant reduction in time and cost that it offers. LS-DYNA is one of the most commonly used non-linear solvers in the automotive industry, particularly for safety related simulations such as the head impact of automotive interiors. LS-DYNA offers a wide variety of material models, and material type 024 (MAT 024, piecewise linear plasticity) is one of the most popular ones [1]. Although it was initially developed for metals, it is commonly used for polymers as well. LS-DYNA also offers several other material models specifically developed to simulate polymers, such as material types 019, 089, 123, to name a few.
2014-04-01
Technical Paper
2014-01-0198
Gauri Ranadive, Anindya Deb, Bisheshwar Haorongbam
Abstract Load cells and accelerometers are commonly used sensors for capturing impact responses. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers when these are mounted on a moving impactor. In the present work, evaluation of the responses obtained from a drop-weight impact testing set-up for an axially loaded specimen has been carried out with the aid of an equivalent lumped parameter model (LPM) of the set-up. In this idealization, a test component such as a steel double hat section subjected to axial impact load is represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impactor comprising a hammer and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a true behavior of a specimen. By specifying an impact velocity to the impactor as an initial condition and using an implicit time integration technique, it is shown that the model accurately reproduces the input load-displacement behavior of the nonlinear spring corresponding to the tested component.
2014-04-01
Technical Paper
2014-01-0445
Flaura Winston, Catherine McDonald, Venk Kandadai, Zachary Winston, Thomas Seacrist
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill. The study included an inexperienced group (n=21): 16-17 year olds with 90 days or fewer of provisional licensure, and an experienced group (n=17): 25-50 year olds with at least 5 years of PA licensure, at least 100 miles driven per week and no self-reported collisions in the previous 3 years.
Viewing 211 to 240 of 15836

Filter

  • Article
    493
  • Book
    105
  • Collection
    42
  • Magazine
    617
  • Technical Paper
    10008
  • Standard
    4571