Display:

Results

Viewing 211 to 240 of 15794
Technical Paper
2014-04-01
Stacy M. Imler, Michelle F. Heller, Christine C. Raasch, Heather N. Watson, Ke Zhao
Abstract The risk of sustaining injury in rear impact collisions is correlated to collision severity as well as other factors such as restraint usage. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2011) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 5:00 and 7:00, indicating a rear impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V and restraint system use. Each body region (head, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately. Risk of injury for each of these regions was examined based on delta-V, which is an indicator of crash severity in the absence of intrusion into the occupant compartment.
Technical Paper
2014-04-01
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Muthukumar Muthanandam, Satheesh Narayanan
Abstract A logistic regression analysis of accident cases in the NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) database clearly shows that pedestrian pelvis injuries tend to be complex and depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, and the gender and age of the pedestrian. Adult female models (50th %ile female AF50: 161 cm and 61 kg; 5th %ile female AF05: 154 cm and 50 kg) were developed by morphing the JAMA 50th %ile male AM50 and substituting the pelvis of the GHBMC AM50 model. The fine-meshed pelvis model thus obtained is capable of predicting pelvis fractures. Simulations conducted with these models indicate that the characteristics of pelvis injury patterns in male and female pedestrians are influenced by the hip/BLE height ratio and to some extent by the pelvis bone shape. A previously developed six-year-old (6YO) child pedestrian model and the newly developed models were used to estimate the head impact time (HIT) for a typical SUV fitted with an active pop-up hood system.
Technical Paper
2014-04-01
Richard R. Ruth, Jeremy Daily
Abstract 2013 and 2014 Ford Flex vehicles and airbag control modules with event data recorders (EDRs) were tested to determine the accuracy of speed and other data in the steady state condition, to evaluate time reporting delays under dynamic braking conditions, and to evaluate the accuracy of the stability control system data that the module records. This recorder is from the Autoliv RC6 family and this is the first known external research conducted on post 49CFR Part 563 Ford EDRs. The vehicle was instrumented with a VBox and a CAN data logger to compare external GPS based speeds to CAN data using the same synchronized time base. The vehicle was driven in steady state, hard braking, figure 8 and yaw conditions. The Airbag Control Module (ACM) was mounted onto a moving linear sled. The CAN bus data from driving was replayed as the sled created recordable events and the EDR data was compared to the reference instrumentation. The accuracy and timing of the data on a second stability control CAN bus was verified, and the transfer function between the CAN bus data and the EDR data was mapped, such that EDR data from any set of CAN data can be predicted.
Technical Paper
2014-04-01
Simon B. Albrodt, Fadi Tahan, Kennerly Digges
Abstract Different roof strength methods are applied on the 2003 Ford Explorer finite element (FE) model to achieve the current Federal Motor Vehicle Safety Standard (FMVSS) 216 requirements. Two different modification approaches are utilized. Additionally, the best design of each approach is tested dynamically, in rollover and side impact simulations. In the first approach, several roll cage designs are integrated in all pillars, roof cross-members, and in the side roof rails. A roll cage design with a strength-to-weight ratio (SWR) of 3.58 and 3.40 for driver and passenger sides, respectively, with a weight penalty of 18.54 kg is selected for dynamic test assessments. The second approach investigates different localized reinforcements to achieve a more reasonable weight penalty. A localized reinforcement of the B-pillar alone with a tube meets the new FMVSS 216 requirements with a weight penalty of 4.52 kg and is selected for dynamic analyses. The two selected reinforcement designs are tested in a dynamic unconstrained rollover crash under different pitch angles while using common rollover initial conditions.
Technical Paper
2014-04-01
Taewung Kim, Jason Kerrigan, Varun Bollapragada, Jeff Crandall, Ravi Tangirala, Michael Guerrero
Abstract Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development. A full-size SUV vehicle dynamics model was developed and validated with static test data and curb-trip rollover test data.
Technical Paper
2014-04-01
Donald Parker, John Zolock, Richard Keefer
Studies of rollover accidents have reported crash attributes such as the number of rolls, rollout distance, initial over-the-ground speed, average roll rate, average over-the-ground deceleration, magnitude of roof deformation, cumulative damage, time and post-crash headroom. While these more general attributes are related to the repeated vehicle-to-ground impacts during a rollover, it has been previously shown [1] that a specific ground impact during a rollover and its consequences can be studied in more detail by using its acceleration time history (crash pulse or impulse) and energy loss. These two quantities are particularly meaningful to use when studying impact mechanics, however, they are limited to circumstances where the data exists, which means real-world on-road crashes cannot be used directly. Acceleration and energy data have been collected and previously published for three Subaru Forester dolly rollover tests, and have been studied in more detail in this writing. This same vehicle model has also been crash tested by the NHTSA.
Technical Paper
2014-04-01
Santosh Uttam Bhise, Meyyappan Valliappan
Abstract This paper highlights a simplified CAE model technique, which can simulate and predict door crush strength performance quickly. Such quick models can be used for DFSS and Design change studies. The proposed method suggests an equivalent sub model technique using only the door beam with tuned stiffness end springs to predict FMVSS214S full vehicle crush performance. Such models can be solved in minutes and hence very useful for DFSS studies during product design. The proposed method can be used to finalize door beam design for identical size of vehicle doors to meet required FMVSS214S crush performance. The paper highlights the door beam end springs tuning for identical size of cars and SUVs. Four vehicles were considered for the study. A single spring F-D (force -displacement) is tuned which correlated well for frond door of all the four vehicles. A separate unique spring F-D was needed which correlated well for rear door of all the 4 vehicles.
Technical Paper
2014-04-01
Shai Cohen, Dhafer Marzougui, Cing-Dao Kan, Fadi Tahan
Abstract Many dynamic test systems currently exist to assess rollover. This paper introduces a new test device that combines features from a multitude of different tests. It also covers the concept development, a scaled prototype design and test results from both physical and virtual tests. The Guided Rollover Test (GRT) device subjects vehicles to repeatable initial conditions by having a cart follow a guided maneuver similar to a forward J-turn with an increasing curvature sufficient to roll most vehicles. A test vehicle is carried on the cart at constant longitudinal velocity until it rolls. The cart is fitted with a tripping edge to eliminate slipping and remove the influence of tire properties and road-surface friction. Vehicles are subjected to a rollover based on their own performance characteristics which define the dynamics and consequently the roof to ground contact. Vehicle mechanical systems (suspension), passive safety systems (roof) and occupant containment systems (airbags, seat-belts, etc.) would be assessed under dynamic rollover loading.
Technical Paper
2014-04-01
Todd MacDonald, Moustafa EL-Gindy, Srikanth Ghantae, Sarathy Ramachandra, David Critchley
Abstract A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs. While a new FUPD is developed and tested which highlights benefits of deflecting the passenger vehicle in small overlap cases, a dual stage FUPD is proposed revealing potential benefits in utilizing the radiator to absorb some collision energy.
Technical Paper
2014-04-01
Sanjeev Kumar, Pinak Deb
Abstract The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted. Further design iterations were carried out to optimize the stiffness of B-pillar for meeting the performance targets of B-pillar intrusion and velocity.
Technical Paper
2014-04-01
Ali Seyed Yaghoubi, Paul Begeman, Golam Newaz, Derek Board, Yijung Chen, Omar Faruque
Abstract The present investigation details an experimental procedure for frontal impact responses of a generic steel front bumper crush can (FBCC) assembly subjected to a rigid full and 40% offset impact. There is a paucity of studies focusing on component level tests with FBCCs, and of those, speeds carried out are of slower velocities. Predominant studies in literature pertain to full vehicle testing. Component level studies have importance as vehicles aim to decrease weight. As materials, such as carbon fiber or aluminum, are applied to vehicle structures, computer aided models are required to evaluate performance. A novel component level test procedure is valuable to aid in CAE correlation. All the tests were conducted using a sled-on-sled testing method. Several high-speed cameras, an IR (Infrared) thermal camera, and a number of accelerometers were utilized to study impact performance of the FBCC samples. A linear potentiometer was installed next to each crush-can to directly measure crush length of the can.
Technical Paper
2014-04-01
Kumar B. Kulkarni, Jaisankar Ramalingam, Ravi Thyagarajan
It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA) phase, to quickly predict occupant injury risk due to under-body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. In a prior study [16], an extensive parametric study was conducted in a systematic manner so as to create look-up tables or automated software tools that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of a suitable blast load parameter. The primary objective of this paper is to quantitatively evaluate the accuracy of using such a tool in lieu of building a detailed model for simulation and occupant injury assessment.
Technical Paper
2014-04-01
Fei Han, Weiwen Deng, Sumin Zhang, Bei Ren, Ying Wang, Jie Bai
This paper presents a novel approach of developing a vision-based forward collision warning system (FCW) under a virtual and real-time driving environment. The proposed environment mainly includes a 3D high-fidelity virtual driving environment developed with computer graphics technologies, a virtual camera model and a real-time hardware-in-the-loop (HIL) system with a driver simulator. Some preliminary simulation has been conducted to verify that the proposed virtual environment along with the image generated by a virtual camera model is valid with sufficient fidelity, and the real-time HIL development system with driver in the loop is effective in the early design, test and verification of the FCW and other similar ADAS systems.
Technical Paper
2014-04-01
Dietmar Otte, Birgitt Wiese
This study deals with the risk of injury to the bicyclist's head and the benefits of wearing a bicycle helmet in terms of reduction of injury severity or even injury avoidance. The accident data of 4,245 injured bicyclists as a randomized sample, collected by a scientific research team within the GIDAS project (German In-Depth Accident Study) were analyzed. Given that head injuries result in approximately 40% of bicycle-related crashes, helmet usage provides a sensible first-level approach for improving incidence and severity of head injuries. The effectiveness of the bicycle helmet was examined using descriptive and multivariate analysis for 433 bicyclists with a helmet and 3,812 bicyclists without a helmet. Skull fractures, severe brain injuries and skull base fractures were up to 80% less frequent for bicyclists wearing a helmet. Among individuals 40 years of age and older, a significant increase of severe head injuries occurred if no helmet was used compared to younger persons with helmet.
Technical Paper
2014-04-01
Michael Guerrero, Kapil Butala, Ravi Tangirala, Amy Klinkenberger
NHTSA has been investigating a new test mode in which a research moving deformable barrier (RMDB) impacts a stationary vehicle at 90.1 kph, a 15 degree angle, and a 35% vehicle overlap. The test utilizes the THOR NT with modification kit (THOR) dummy positioned in both the driver and passenger seats. This paper compares the behavior of the THOR and Hybrid III dummies during this oblique research test mode. A series of four full vehicle oblique impact crash tests were performed. Two tests were equipped with THOR dummies and two tests were equipped with Hybrid III dummies. All dummies represent 50th percentile males and were positioned in the vehicle according to the FMVSS208 procedure. The Hybrid III dummies were instrumented with the Nine Accelerometer Package (NAP) to calculate brain injury criteria (BrIC) as well as THOR-Lx lower legs. Injury responses were recorded for each dummy during the event. High speed cameras were used to capture vehicle and dummy kinematics. The vehicle restraint devices and their associated deployment times remained the same for each test.
Technical Paper
2014-04-01
Monica Majcher, Hongyi Xu, Yan Fu, Ching-Hung Chuang, Ren-Jye Yang
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating. These call for identifying the most appropriate multi-objective optimization algorithm to solve this type of vehicle restraint system design problem.
Technical Paper
2014-04-01
P. Prasad, D. Dalmotas, A. German
Abstract This paper presents the analysis of a series of frontal crash tests conducted by the Insurance Institute of Highway Safety that are commonly referred to as Small Overlap Impacts (SOI). The occurrence and severity of such frontal impacts in the real world were estimated using two different methods. Both methods used the National Automotive Sampling Scheme (NASS), which is a stratified sample of crashes in the US. The first method utilized an algorithm commonly known as Frontal Impact Taxonomy (FIT). The second method was based on comparison of deformation patterns of vehicles involved in frontal crashes in the NASS data files with those produced in tests conducted by the IIHS. FIT analysis of the data indicate that approximately 7.5% of all 11-1 o'clock frontal crashes in NASS are represented by the IIHS SOI test condition and they account for 6.1% of all serious-to-fatal injuries to front seat occupants restrained by seat belts and airbags. Based on the analysis of test and crash front end damage data, it is estimated that the IIHS SOI test mode represents 3% to 8% of all fatal crashes and 4.6 to 9% of all MAIS3+F injury producing frontal crashes.
Technical Paper
2014-04-01
Toshiya Hirose, Masato Gokan, Nobuyo Kasuga, Toichi Sawada
Collision avoidance systems for rear-end collisions have been researched and developed. It is necessary to activate collision warnings and automatic braking systems with appropriate timing determined by a monitoring system of a driver's braking action. Although there are various systems to monitor driving behavior, this study aims to create a monitoring system using a driver model. This study was intended to construct a model of a driver's braking action with the Time Delay Neural Network (TDNN). An experimental scenario focuses on rear-end collisions on a highway, such as the driver of a host vehicle controlling the brake to avoid a collision into a leading vehicle in a stationary condition caused by a traffic jam. In order to examine the accuracy of the TDNN model, this study used four parameters: the number of learning, the number of neurons in the hidden layer, the sampling time with 0.01 second as a minimum value, and the number of the delay time. In addition, this study made a comparative review of the TDNN model and the Neural Network (NN) model to examine the accuracy of the TDNN model.
Technical Paper
2014-04-01
Lotta Jakobsson, Magdalena Lindman, Anders Axelson, Bengt Lokensgard, Mats Petersson, Bo Svanberg, Jordanka Kovaceva
Run off road events are frequent and can result in severe consequences. The reasons for leaving the road are numerous and the sequence the car is exerted to differs in most events. The objective of this study is to identify different situations and mechanisms both in respect to accident avoidance and occupant protection and to present test methods addressing the different identified mechanisms of run off road occupant safety. Mechanisms and influencing factors are identified using statistical and in-depth crash data as well as driving data. There are a number of reasons for leaving the road; driver fatigue, driver distraction and inadequate speed in relation to the traffic situation to mention a few. An outline of principle test methods for evaluating technology assisting the driver to stay on the road is presented in relation to the identified situations and mechanisms. Crash test methods for some typical run off road scenarios are suggested. Important occupant protection aspects concern mainly occupant retention as well as vertical loading through the seat.
Technical Paper
2014-04-01
Yohsuke Tamura, Masayuki Takeuchi, Kiyotaka Maeda, Noriaki Ohtsuka, Kenji Sato
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2. The following results were obtained: (1) Methods 1 and 2 produced nearly identical results when the minimum temperature profile in the GTR test procedure was followed in both cases. (2) A steel protection cover on the cylinder significantly lowered cylinder surface temperatures during the fire test until activation of the thermal pressure relief device (TPRD). (3) A thermoplastic cover on the cylinder melted during the fire test and produced an engulfing pool fire during the localized fire portion of the test that accelerated activation of the TPRD.
Technical Paper
2014-04-01
Bethany L. Suderman, Irving S. Scher, Randal P. Ching
Abstract Previous studies have shown that occupant kinematics in lateral impacts are different for near- and far-side occupants. Additionally, injuries to far-side occupants in high-speed lateral impacts have been better documented in the scientific literature; few studies have looked at low-speed far-side occupants. The purpose of this study was to determine the risk of lumbar spine injury for restrained and unrestrained far-side occupants in low- to moderate- speed lateral impacts. The NASS/CDS database was queried for far-side occupants in lateral impacts for different levels of impact severity (categorized by Delta-V): 0 to 8 km/h, 8 to 16 km/h, 16 to 24 km/h and 24 to 32 km/h. To further understand the lumbar spine injuries sustained by occupants in real-world impacts, far-side lateral impact tests with ATDs from the NHTSA Biomechanics Test Database were used to estimate lumbar loads in generic far-side sled tests. From the NASS-CDS data, the risk of an AIS2+ lumbar spine injury was less than 0.2% for lateral impacts with Delta-V's less than 32 km/h.
Technical Paper
2014-04-01
Stanley Chien, Qiang Yi, David Good, Ali Gholamjafari, Yaobin Chen, Rini Sherony
Abstract While the number of traffic fatalities as a whole continues to decline steadily over time, the number of pedestrian fatalities continues to rise (up 8% since 2009) and comprises a larger fraction of these fatalities. In 2011 there were 4,432 pedestrians killed and an estimated 69,000 pedestrian injuries [1]. A new generation of Pedestrian Pre-Collision Systems (PCS) is being introduced by car manufactures to mitigate pedestrian injuries and fatalities. In order to evaluate the performance of pedestrian PCS, The Transportation Active Safety Institute (TASI) at Indiana University-Purdue University Indianapolis is developing a set of test scenarios and procedures for evaluating the performance of pedestrian PCS with the support of the Collaborative Safety Research Center of Toyota. Pedestrian crashes are complex in that there are many aspects about location, driver behavior, and pedestrian behaviors that may have implications for the performance of the PCS. This complexity will generate far more scenarios than can be reasonably tested.
Technical Paper
2014-04-01
Ryan Fix, David King, Travis Fricker
Abstract CRASH3 techniques are often used to reconstruct aligned offset vehicle impacts. The goal of this study was to evaluate the accuracy of the CRASH3 technique using a series of aligned staged collision with varying degrees of overlap. Five front-to-rear vehicle impacts using the same vehicle model were staged using 25, 33, 50, 75 and 100% overlap. Impact kinematics were measured using overhead high speed video. The CRASH3 coefficients and methods developed previously (SAE 2010-01-0069) were used to reconstruct the impact speed and speed changes of both vehicles based on the residual crush. Overall, the CRASH3 analysis yielded good results for the 33 to 100% overlap collisions: predicted speed changes were within 29% of the measured speed change and predicted impact speeds were within 16% of the measured impact speed. The CRASH3 analysis yielded poor results for the 25% overlap collision: the predicted speed changes were up to 59% different from the actual speed changes and the predicted impacts speeds were up to 54% different from the actual impact speeds.
Technical Paper
2014-04-01
Nathan A. Rose, Neal Carter, David Pentecost
Abstract PC-Crash™, a widely used crash analysis software package, incorporates the capability for modeling non-constant vehicle acceleration, where the acceleration rate varies with speed, weight, engine power, the degree of throttle application, and the roadway slope. The research reported here offers a validation of this capability, demonstrating that PC-Crash can be used to realistically model the build-up of a vehicle's speed under maximal acceleration. In the research reported here, PC-Crash 9.0 was used to model the full-throttle acceleration capabilities of three vehicles with automatic transmissions - a 2006 Ford Crown Victoria Police Interceptor (CVPI), a 2000 Cadillac DeVille DTS, and a 2003 Ford F150. For each vehicle, geometric dimensions, inertial properties, and engine/drivetrain parameters were obtained from a combination of manufacturer specifications, calculations, inspections of exemplar vehicles and full-scale vehicle testing. In each case, the full-throttle acceleration of the vehicles modeled in PC-Crash showed good agreement with the acceleration of the real vehicles in our road tests.
Technical Paper
2014-04-01
Nathan A. Rose, Neal Carter
Abstract In a 2012 paper, Brach, Brach, and Louderback (BBL) investigated the uncertainty that arises in calculating the change in velocity and crush energy with the use of the CRASH3 equations (2012-01-0608). They concluded that the uncertainty in these values caused by variations in the stiffness coefficients significantly outweighed the uncertainty caused by variations in the crush measurements. This paper presents a revised analysis of the data that BBL analyzed and further assesses the level of uncertainty that arises in CRASH3 calculations. While the findings of this study do not invalidate BBL's ultimate conclusion, the methodology utilized in this paper incorporated two changes to BBL's methodology. First, in analyzing the crash test data for several vehicles, a systematic error that is sometimes present in the reported crush measurements was accounted for and corrected. This systematic error arises when a vehicle's plastic bumper fascia rebounds more than the underlying structure, creating an air gap and causing the reported crush measurements both to underestimate the actual deformation and to exhibit more scatter than they otherwise would.
Technical Paper
2014-04-01
Sangzhi Zhu, Haiping Du, Nong Zhang, Lifu Wang
In this paper, a more sophisticated mathematical linear model for a roll-plane active hydraulically interconnected suspension (HIS) system was developed. Model parameters tuning were then carried out, which resulted in a model that is capable of producing rather accurate estimation of the system, with significant improvements over models built previously. For the verification of the new model, two simulations and corresponding experiments are conducted. Data comparisons between the simulations and experiments show high consistent responses of the model and the real system, which validated the robustness and accuracy of the new mathematical model. In this process, the characteristics of the pressure response and the rise time inside the actuators have been revealed due to the presence of the flow.
Technical Paper
2014-04-01
Kristofer D. Kusano, H. Gabler, Thomas I. Gorman
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries. The lower operating speed thresholds of some systems also greatly affected benefits estimates.
Technical Paper
2014-04-01
Masayuki Takemura, Masato Imai, Masahiro Kiyohara, Kota Irie, Masao Sakata, Shoji Muramatsu
Abstract Driver safety continues to be improved by advances in active safety technologies. One important example is Lane Departure Warning (LDW). European regulators soon will require LDW in big cars to reduce traffic accidents and New Car Assessment Programs in various countries will include LDW in a few years. Our focus is on rear cameras as sensing devices to recognize lane markers. Rear cameras are the most prevalent cameras for outside monitoring, and new Kids and Cars legislation will make them obligatory in the United States from 2014. As an affordable sensing system, we envision a rear camera which will function both as a rear-view monitoring device for drivers and as an LDW sensing device. However, there is a great difficulty involved in using the rear camera: water-droplets and dirt are directly attached to the lens surface, creating bad lens condition. The purpose of this study is to improve the durability of lane recognition systems when water-droplets and dirt are deposited on the lens surface.
Technical Paper
2014-04-01
Ellen L. Lee, Patrick J. Lee, Mark S. Erickson, Wilson C. Hayes
Abstract When vehicle-specific stiffness coefficients cannot be acquired, stiffness coefficient values that are representative of the desired vehicle type, class, wheelbase or weight are routinely used for accident reconstructions. Since the original compilation of representative vehicle stiffness data almost 20 years ago, changes in crash testing standards and other safety and technological improvements in vehicular design have affected vehicle stiffness. While generic frontal stiffness data have been recently updated to reflect these vehicular changes, rear and side stiffness data have not. Structural, geometric and inertial data for over 300 passenger cars and light trucks were collected. Among the vehicles targeted were the top-selling cars, SUVs, vans and pickups for model years 1990 to 2012. Results indicated that all vehicle types demonstrated increases in mean stiffness over the time period considered. SUVs were, on average, the stiffest vehicle type in the front, rear and side.
Technical Paper
2014-04-01
David Renfroe, Alex Roberts, Raphael Grzebieta, George Rechnitzer, J. Keith Simmons
Abstract This paper examines the directional handling characteristics of several vehicles in their original condition, then examines modifications to a few of these vehicles to determine if the handling characteristics can be made more forgiving of normal operators without sacrificing utility and without substantial increases in cost. These analyses of vehicles are made in the context of what normal operators are capable of performing with regards to steering response.
Viewing 211 to 240 of 15794

Filter

  • Article
    476
  • Book
    116
  • Collection
    42
  • Magazine
    615
  • Technical Paper
    10002
  • Subscription
    4
  • Standard
    4539