Display:

Results

Viewing 181 to 210 of 16667
2016-04-05
Technical Paper
2016-01-1489
Logan Miller, James Gaewsky, Ashley Weaver, Joel Stitzel, Nicholas White
Abstract Crash reconstructions using finite element (FE) vehicle and human body models (HBMs) allow researchers to investigate injury mechanisms, predict injury risk, and evaluate the effectiveness of injury mitigation systems, ultimately leading to a reduced risk of fatal and severe injury in motor vehicle crashes (MVCs). To predict injuries, regional-level injury metrics were implemented into the Total Human Model for Safety (THUMS) full body HBM. THUMS was virtually instrumented with cross-sectional planes to measure forces and moments in the femurs, upper and lower tibias, ankles, pelvis (pubic symphysis, ilium, ischium, sacrum, ischial tuberosity, and inferior and superior pubic ramus), and the cervical, thoracic, and lumbar vertebrae and intervertebral discs. To measure accelerations, virtual accelerometers were implemented in the head, thoracic vertebrae, sternum, ribs, and pelvis.
2016-04-05
Technical Paper
2016-01-1487
Zhenhai Gao, Chuzhao Li, Hongyu Hu, Chaoyang Chen, Hui Zhao, Helen Yu
Abstract At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
2016-04-05
Technical Paper
2016-01-1536
Chung-Kyu Park, Cing-Dao Kan
Abstract In this study, the available metrics to evaluate the crash pulse severity are reviewed and their assessability is investigated by using frontal New Car Assessment Program (NCAP) test data. Linear regression analysis and sled test simulations are conducted. In addition, a new approach is proposed to measure the crash pulse severity and restraint system performance separately and objectively.
2016-04-05
Technical Paper
2016-01-1490
Hans W. Hauschild, Frank Pintar, Dale Halloway, Mark Meyer, Rodney Rudd
Abstract Oblique crashes to the vehicle front corner may not be characteristic of either frontal or side impacts. This research evaluated occupant response in oblique crashes for a driver, rear adult passenger, and a rear child passenger. Occupant responses and injury potential were evaluated for seating positions as either a far-or near-side occupant. Two crash tests were conducted with a subcompact car. The vehicle’s longitudinal axis was oriented 45 degrees to the direction of travel on a moving platform and pulled into a wall at 56 km/h. Dummies utilized for the seating positions were an adult dummy (50th-percentile-HIII and THOR-Alpha) for the front-left (driver) position, 5th-percentile-female-HIII for the right-rear position, and a 3-year-old HIII for the left-rear position.
2016-04-05
Technical Paper
2016-01-1503
Shotaro Odate, Yukinori Midorikawa, Yuki Yamazaki
Abstract Motorized seatbelt systems that retract seatbelts using motors are being mass-produced by many manufacturers. Scenarios for operation of these systems cover a wide range, including automatic braking for collision avoidance, brake assist and other such pre-crash situations, when the seatbelt is buckled, unbuckled and stored, during sport driving, or under normal conditions. These systems increase the retracting load of the motor using gears, and they can apply a high load in retracting the seatbelt. Previous systems, however, were designed primarily for pre-crash conditions. In previous systems, motor speed rose to higher levels in the normal operating state. The tendency to generate more noise and the application of higher loads on seatbelt retraction therefore became issues. For the present study, these issues were addressed using simulation to optimize the gear ratio.
2016-04-05
Technical Paper
2016-01-1505
William W. Van Arsdell, Paul Weber, Charles Stankewich, Brian Larson, Ryan Hoover, Richard Watson
Abstract This paper investigates the role that load-limiters play with respect to the performance of occupant protection systems, with focus on performance in frontal crashes. Modern occupant protection systems consist of not just the seat belt, but also airbags, interior vehicle surfaces and vehicle structure. Modern seat belts very often incorporate load-limiters as well as pretensioners. Published research has established that load-limiters and pretensioners increase the effectiveness of occupant protection systems. Some have argued that load-limiters with higher deployment thresholds are always better than load-limiters with lower deployment thresholds. Through testing, modeling and analysis, we have investigated this hypothesis, and in this paper we present test and modeling data as well as a discussion to this data and engineering mechanics to explain why this hypothesis is incorrect.
2016-04-05
Technical Paper
2016-01-1521
Masaaki Kuwahara, Tsuyoshi Yasuki, Takeki Tanoue, Ryosuke Chikazawa
Abstract This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
2016-04-05
Technical Paper
2016-01-1522
Zhenwen Wang, Brock Watson
Abstract A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
2016-04-05
Technical Paper
2016-01-1527
Paul Podzikowski, Suk Jae Ham, John Cadwell, Aviral Shrivatri
Abstract The introduction of a revised New Car Assessment Program (NCAP) frontal crash test in the US has been challenging due to more stringent Anthropomorphic Test Device (ATD) rating metrics such as neck injury (Nij). These ATD responses in full vehicle tests may be under-predicted with conventional linear sleds because they are not capable of reproducing the pitching effect seen in some vehicle tests. The primary objective of this study was to confirm the effects of pitching sled on front passenger 5th %ile female ATD Nij response by comparing prototype vehicle test to pitching sled and linear sled tests. A second objective was to confirm that newly introduced pitching sled with enhanced pitching capability was able to reproduce similar vehicle kinematics when compared to a baseline vehicle test.
2016-04-05
Technical Paper
2016-01-1528
Peijun Ji, Qing Zhou
Abstract As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
2016-04-05
Journal Article
2016-01-1568
L. Daniel Metz
Abstract Roadway tractive capabilities are an important factor in accident reconstruction. In the absence of full-scale experiments, tire/road coefficient of friction values are sometimes quoted from reference textbooks. For the various types of road construction, the values are given only in the form of a wide range. One common roadway type is oil-and-chip construction. We examine stopping distances for newly-rocked oil-and-chip roads vs. similarly constructed roads that have been traffic-polished. The examination was conducted through full-scale braking experiments with instrumented vehicles. Results show that the differences between newly-rocked oil-and-chip roads when compared to roads that are traffic-polished are on the same order as vehicle, tire and ABS algorithm differences, and that full-scale testing is required for accurate μ-values.
2016-04-05
Book
This is the electronic format of the Journal.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Journal Article
2016-01-1456
Rini Sherony, Renran Tian, Stanley Chien, Li Fu, Yaobin Chen, Hiroyuki Takahashi
Abstract Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
2016-04-05
Journal Article
2016-01-1439
Nazan Aksan, Lauren Sager, Sarah Hacker, Robert Marini, Jeffrey Dawson, Steven Anderson, Matthew Rizzo
Abstract We examined the effectiveness of a heads-up Forward Collision Warning (FCW) system in 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The warnings were implemented in a fixed based, immersive, 180 degree forward field of view simulator. The FCW included a visual advisory component consisting of a red horizontal bar which flashed in the center screen of the simulator that was triggered at time-to-collision (TTC) 4 seconds. The bar roughly overlapped the rear bumper of the lead vehicle, just below the driver’s line-of-sight. A sustained auditory tone (∼80 dB) was activated at TTC=2 to alert the driver to an imminent collision. Hence, the warning system differed from the industry standard in significant ways. 95% Confidence intervals for the safety gains ranged from -.03 to .19 seconds in terms of average correction time across several activations. Older and younger adults did not differ in terms of safety gains.
2016-04-05
Journal Article
2016-01-1540
Timothy Keon
Abstract The National Highway Traffic Safety Administration has performed research investigating the Test Device for Human Occupant Restraint 50th male (THOR-50M) response in Oblique crash tests. This research is being expanded to investigate THOR-50M in the driver position in a 56 km/h frontal impact crash. Hybrid III 5th percentile adult female (AF05) anthropomorphic test devices (ATDs) were used in this testing to evaluate the RibEye Deflection Measurement System. The AF05 ATDs were positioned in the right front passenger and right rear passenger seating positions. For the right front passenger, the New Car Assessment Procedure (NCAP) seating procedure was used, except the seat fore-aft position was set to mid-track. For the right rear passenger, the seating followed the FMVSS No. 214 Side Impact Compliance Test Procedure. The NCAP frontal impact test procedure was followed with additional vehicle instrumentation and pre/post-test measurements.
2016-04-05
Journal Article
2016-01-1494
Peter Xing, Felix Lee, Thomas Flynn, Craig Wilkinson, Gunter Siegmund
Abstract The accuracy of the speed change reported by Generation 1 Toyota Corolla Event Data Recorders (EDR) in low-speed front and rear-end collisions has previously been studied. It was found that the EDRs underestimated speed change in frontal collisions and overestimated speed change in rear-end collisions. The source of the uncertainty was modeled using a threshold acceleration and bias model. This study compares the response of Generation 1, 2 and 3 Toyota EDRs from Toyota Corolla, Camry and Prius models. 19 Toyota airbag control modules (ACMs) were mounted on a linear sled. The ACMs underwent a series of frontal and rear-end haversine crash pulses of varying severity, duration and peak acceleration. The accuracy and trigger thresholds of the different models and generations of EDRs were compared. There were different accuracy trends found between the early Generation 1 and the more modern Generation 2 and 3 EDRs.
2016-04-05
Journal Article
2016-01-1495
Motomi Iyoda, Tom Trisdale, Rini Sherony, Daniel Mikat, William Rose
Abstract An event data recorder (EDR) records the vehicle status at the timing of an accident. Toyota Motor Corporation began the sequential introduction of EDRs onto its vehicles from August 2000. Currently, about 70% of all Toyota’s vehicles in North America are equipped with an EDR, which is more than the average rate of EDR installation in vehicles in North America (around 50%). The U.S. has introduced regulations for EDRs. Toyota regards these as minimum requirements and also records additional data for accident analysis, including the following: (1) pre-crash data, (2) side crash data, (3) rollover data, (4) pedestrian protection pop-up hood (PUH) data, and (5) vehicle control history (VCH) data from a non-crash triggered recording system. The regulations stipulate that EDR data retrieval must be possible using a commercially available tool. The developed system uses the Crash Data Retrieval (CDR) tool manufactured by Bosch.
2016-04-05
Journal Article
2016-01-1479
Gray Beauchamp, David Pentecost, Daniel Koch, Nathan Rose
Abstract Tire mark striations are discussed often in the literature pertaining to accident reconstruction. The discussions in the literature contain many consistencies, but also contain disagreements. In this article, the literature is first summarized, and then the differences in the mechanism in which striations are deposited and interpretation of this evidence are explored. In previous work, it was demonstrated that the specific characteristics of tire mark striations offer a glimpse into the steering and driving actions of the driver. An equation was developed that relates longitudinal tire slip (braking) to the angle of tire mark striations [1]. The longitudinal slip equation was derived from the classic equation for tire slip and also geometrically. In this study, the equation for longitudinal slip is re-derived from equations that model tire forces.
2016-04-05
Journal Article
2016-01-1486
Qi Zhang, Bronislaw Gepner, Jacek Toczyski, Jason Kerrigan
Abstract While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
2016-04-05
Journal Article
2016-01-1477
Pamela D'Addario, Ken Iliadis, Gunter Siegmund
Abstract The ability to accurately calculate a snowmobile’s speed based on measured track marks in the snow is important when assessing a snowmobile accident. The characteristics and length of visible snowmobile track marks were documented for 41 locked-track braking tests and 38 rolldown tests using four modern snowmobiles on a groomed/packed snow surface. The documented track mark lengths were used to quantify the uncertainty associated with using track mark length to estimate initial speed. Regression models were developed for both data sets. The regression model of the locked-track tests revealed that using an average deceleration of 0.36g over the length of the locked track mark provides a good estimate of the best-fit line through the data, with the upper and lower 95th percentile prediction interval bounds best represented by using deceleration rates of 0.23g and 0.52g respectively.
2016-04-05
Journal Article
2016-01-1660
Takahiro Okano, Akira Sakai, Yusuke Kamiya, Yoshio Masuda, Tomoyuki Yamaguchi
Abstract The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
2016-04-05
Journal Article
2016-01-1488
Derek Jones, James Gaewsky, Ashley Weaver, Joel Stitzel
Abstract Computational finite element (FE) modeling of real world motor vehicle crashes (MVCs) is valuable for analyzing crash-induced injury patterns and mechanisms. Due to unavailability of detailed modern FE vehicle models, a simplified vehicle model (SVM) based on laser scans of fourteen modern vehicle interiors was used. A crash reconstruction algorithm was developed to semi-automatically tune the properties of the SVM to a particular vehicle make and model, and subsequently reconstruct a real world MVC using the tuned SVM. The required algorithm inputs are anthropomorphic test device position data, deceleration crash pulses from a specific New Car Assessment Program (NCAP) crash test, and vehicle interior property ranges. A series of automated geometric transformations and five LSDyna positioning simulations were performed to match the FE Hybrid III’s (HIII) position within the SVM to reported data. Once positioned, a baseline simulation using the crash test pulse was created.
2016-04-05
Technical Paper
2016-01-1499
Willy Klier, Thomas Lich, Gian Antonio D’Addetta, Heiko Freienstein, Armin Koehler, Bastian Reckziegel, Zerong Yu
Abstract On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
2016-04-05
Technical Paper
2016-01-1470
Nathan A. Rose, Neal Carter, Gray Beauchamp
Abstract Calculating the speed of a yawing and braked vehicle often requires an estimate of the vehicle deceleration. During a steering induced yaw, the rotational velocity of the vehicle will typically be small enough that it will not make up a significant portion of the vehicle’s energy. However, when a yaw is impact induced and the resulting yaw velocity is high, the rotational component of the vehicle’s kinetic energy can be significant relative to the translational component. In such cases, the rotational velocity can have a meaningful effect on the deceleration, since there is additional energy that needs dissipated and since the vehicle tires can travel a substantially different distance than the vehicle center of gravity. In addition to the effects of rotational energy on the deceleration, high yaw velocities can also cause steering angles to develop at the front tires. This too can affect the deceleration since it will influence the slip angles at the front tires.
2016-04-05
Journal Article
2016-01-0316
Dorin Drignei, Zissimos Mourelatos, Ervisa Kosova, Jingwen Hu, Matthew Reed, Jonathan Rupp, Rebekah Gruber, Risa Scherer
Abstract We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
2016-04-05
Journal Article
2016-01-0340
Tina Hull, Monika A. Minarcin
Abstract Applications using industrial robotics have typically led to establishing a safeguarded space encompassing a wide radius around the robot. Operator access to this hazard zone was restricted by a combination of means, such as hard guarding, safeguarding, awareness means, and personal protective equipment. The introduction of collaborative robots is redefining safeguarding requirements. Many collaborative robots have inherently safe designs that enable an operator and a robot to work within a shared, collaborative workspace. New technology in industrial robotics has opened up opportunities for collaborative operation. Collaborative operation could include either industrial or collaborative robots, depending on its application. The current defined modes of collaborative operation are hand guiding; speed and separation monitoring; safety-rated monitored stop; and, power and force limiting.
2016-04-05
Journal Article
2016-01-0407
Da-Zhi Wang, Guang-Jun Cao, Chang Qi, Yong Sun, Shu Yang, Yu Du
Abstract The increasing demand for lightweight design of the whole vehicle has raised critical weight reduction targets for crash components such as front rails without deteriorating their crash performances. To this end the last few years have witnessed a huge growth in vehicle body structures featuring hybrid materials including steel and aluminum alloys. In this work, a type of tapered tailor-welded tube (TTWT) made of steel and aluminum alloy hybrid materials was proposed to maximize the specific energy absorption (SEA) and to minimize the peak crushing force (PCF) in an oblique crash scenario. The hybrid tube was found to be more robust than the single material tubes under oblique impacts using validated finite element (FE) models. Compared with the aluminum alloy tube and the steel tube, the hybrid tube can increase the SEA by 46.3% and 86.7%, respectively, under an impact angle of 30°.
2016-04-05
Journal Article
2016-01-0404
Qianqian Du
Abstract Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
2016-04-05
Journal Article
2016-01-0519
Xiaoqing Xu, Bohan Liu, Yan Wang, Yibing Li
Abstract The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate.
Viewing 181 to 210 of 16667

Filter