Display:

Results

Viewing 181 to 210 of 16228
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode “Sensors: Advanced Safety” (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
2015-04-14
Collection
Active Safety and Driver assistance systems are gaining importance as many passive safety systems have already been found to have yielded significant safety benefits that are possible from the deployment of those systems in the fleet. Similar success will much depend upon how fast these systems proliferate the entire passenger vehicle fleet. It will also depend on the deployment strategies used by the industry and the government as well as consumer acceptance and market demand for these systems. Additionally, opportunities exist to use the information gained from the various onboard sensors and vision systems in active safety systems for improving the effectiveness of today’s passive safety systems such as seat belts, airbags, and post-crash safety systems even further by the integration of active and passive safety systems.
2015-04-14
Collection
The Occupant Restraints technical paper collection highlights papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-14
Collection
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers covern injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance.
2015-04-14
Technical Paper
2015-01-1700
John D. Bullough
Abstract Warning lights and beacons on service vehicles such as maintenance trucks, tow trucks, utility service vehicles and delivery vehicles are an important line of defense for the workers who operate them. These flashing lights can also contribute to visual chaos making it difficult to navigate through a work zone location. Research on the flashing configuration and spatial and temporal coordination of warning lights that could adapt to ambient conditions and situations is described, leading to recommendations for preliminary performance specifications
2015-04-14
Technical Paper
2015-01-1704
Dee Kivett, John Smith
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
2015-04-14
Technical Paper
2015-01-1703
John D. Bullough
Abstract Assessing the safety impacts of vehicle forward lighting is a challenge because crash data do not always contain details necessary to ascertain the role, if any, of lighting in crashes. The present paper describes several approaches to evaluating the safety impacts of lighting using naturalistic driving data. Driving behavioral data and descriptive narratives of crashes and near-miss incidents might provide new opportunities to understand how forward lighting improves traffic safety.
2015-04-14
Technical Paper
2015-01-1475
Alan F. Asay, Jarrod Carter, James Funk, Gregory Stephens
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
2015-04-14
Technical Paper
2015-01-1476
P Selvakumar, Arun Mahajan, R Murasolimaran, C Elango
Abstract Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Technical Paper
2015-01-1483
Anindya Deb, N Shivakumar, Clifford Chou
Abstract Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
2015-04-14
Technical Paper
2015-01-1487
Andreas Teibinger, Harald Marbler-Gores, Harald Schluder, Veit Conrad, Hermann Steffan, Josef Schmidauer
Abstract Structural component testing is essential for the development process to have an early knowledge of the real world behaviour of critical structural components in crash load cases. The objective of this work is to show the development for a self-sufficient structural component test bench, which can be used for different side impact crash load cases and can reflect the dynamic behaviour, which current approaches are not able. An existing basic system is used, which includes pneumatic cylinders with a controlled hydraulic brake and was developed for non-structural deformable applications only (mainly occupant assessments). The system is extended with a force-distance control. The method contains the analysis of a whole vehicle FEM simulation to develop a methodology for controlled force transmission with the pneumatic cylinders for a structural component test bench.
2015-04-14
Technical Paper
2015-01-1488
Adam G. M. Cook, Moustafa El-Gindy, David Critchley
Abstract This work investigates a multi-objective optimization approach for minimizing design parameters for Front Underride Protection Devices (FUPDs). FUPDs are a structural element for heavy vehicles to improve crashworthiness and prevent underride in head-on collision with another vehicle. The developed dsFUPD F9 design for a Volvo VNL was subjected to modified ECE R93 testing with results utilized in the optimization process. The optimization function utilized varying member thickness to minimize deformation and system mass. Enhancements to the function were investigated by introducing variable materials and objectifying material cost. Alternative approaches for optimization was also needed to be explored. Metamodel-based and Direct simulation optimization strategies were compared to observe there performance and optimal designs.
2015-04-14
Technical Paper
2015-01-1485
Jiri Kral, Theresa Kondel, Mark Morra, Stephen Cassatta, Peter Bidolli, Patrick Stebbins, Vikas Joshi
Abstract A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
2015-04-14
Technical Paper
2015-01-1486
Craig A. Markusic, Ram Songade
Abstract Simplified Side Impact Finite Element Model (SSM) merged the complex side crash model parameters used in LS-DYNA4; the same sophisticated software employed by finite element (FE)2 analysts, and the user-friendly custom graphical user interface (GUI)1 to allow users having little to no simulation software knowledge the ability to conduct a full vehicle representative crash simulation. Prior to SSM development a literature search was carried to try and identify similar CAE tools for side impact. We did not find any tool that would cater specifically to side impact. During the testing phase, SSM demonstrated that one model analysis run can be completed in fewer than thirty (30) minutes, a radical efficiency increase because previous procedures require several days of effort from a highly skilled FE2 analyst to set up, execute, and analyze.
2015-04-14
Technical Paper
2015-01-0273
Helmut Martin, Martin Krammer, Bernhard Winkler, Christian Schwarzl
Abstract Although the ISO 26262 provides requirements and recommendations for an automotive functional safety lifecycle, practical guidance on how to handle these safety activities and safety artifacts is still lacking. This paper provides an overview of a semi-formal safety engineering approach based on SysML for specifying the relevant safety artifacts in the concept phase. Using specific diagram types, different views of the available data can be provided that reflects the specific needs of the stakeholders involved. One objective of this work is to improve the common understanding of the relevant safety aspects during the system design. The approach, which is demonstrated here from the perspective of a Tier1 supplier for an automotive battery system, covers different breakdown levels of a vehicle. The safety workflow presented here supports engineers' efforts to meet the safety standard ISO 26262 in a systematic way.
2015-04-14
Technical Paper
2015-01-0275
Gokul Krithivasan, William Taylor, Jody Nelson
Abstract In ISO 26262, the top-level safety goals are derived using the Hazard Analysis and Risk Assessment. Functional safety requirements (FSRs) are then derived from these safety goals in the concept phase (ISO 26262-3:2011). The standard does not call out a specific method to develop these FSRs from safety goals. However, ISO 26262-8:2011, Clause 6, does establish requirements to ensure consistent management and correct specification of safety requirements with respect to their attributes and characteristics throughout the safety lifecycle. Hence, there are expectations on the part of system engineers to bridge this gap. The method proposed in this paper utilizes concepts from process modeling to ensure the completeness of these requirements, eliminate any external inconsistencies between them and improve verifiability.
2015-04-14
Technical Paper
2015-01-0369
Rupesh Sonu Kakade
Abstract In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
2015-04-14
Technical Paper
2015-01-0407
Timothy W. Skszek, Matthew Zaluzec, Jeff Conklin, David Wagner
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance, occupant safety and utility of the baseline production vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The MMLV vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine, resulting in a significant environmental benefit and fuel reduction. This paper includes details associated with the MMLV project approach, mass reduction and environmental impact.
2015-04-14
Technical Paper
2015-01-0575
SongAn Zhang, Qing Zhou, Yong Xia
Abstract Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading.
2015-04-14
Technical Paper
2015-01-0564
Sung Wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
Abstract In a car accident which is involving pedestrians, head injuries occur very frequently as the head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate the pedestrian injury, and car manufacturers are trying to meet the criterion by changing the design and/or materials.. However, there are some difficulties in the windshield impact test, e.g. a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful results from single test and thus, tests should be executed several times. In this study, a lab-scale windshield impact test was performed using a modified instrumented dart impact (IDI) tester. Tests were carried out by switching test conditions such as the impact speed, the size of the head form and the specimen thickness.
2015-04-14
Technical Paper
2015-01-0571
Andreas Teibinger, Christian Mayer, Ernö Dux, Gian Antonio D’Addetta, Peter Luttenberger, Jac Wismans, Rémy Willinger
Abstract In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
2015-04-14
Technical Paper
2015-01-1490
Tony R. Laituri, Scott Henry, Kaye Sullivan
Abstract Injury distributions of belted drivers in 1998-2013 model-year light passenger cars/trucks in various types of real-world frontal crashes were studied. The basis of the analysis was field data from the National Automotive Sampling System (NASS). The studied variables were injury severity (n=2), occupant body region (n=8), and crash type (n=8). The two levels of injury were moderate-to-fatal (AIS2+) and serious-to-fatal (AIS3+). The eight body regions ranged from head/face to foot/ankle. The eight crash types were based on a previously-published Frontal Impact Taxonomy (FIT). The results of the study provided insights into the field data. For example, for the AIS2+ upper-body-injured drivers, (a) head and chest injury yield similar contributions, and (b) about 60% of all the upper-body injured drivers were from the combination of the Full-Engagement and Offset crashes.
2015-04-14
Technical Paper
2015-01-1492
Kazunobu Ogaki, Takayuki Kawabuchi, Satoshi Takizawa
Abstract The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
2015-04-14
Technical Paper
2015-01-0130
Julio Rodriguez, Ken Rogich, Philip Pidgeon, Kim Alexander, John R. Wagner
Abstract Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
2015-04-14
Technical Paper
2015-01-0137
Ying Fan
Abstract Accurate risk prioritizing is directly related to the effectiveness of risk management. To overcome the shortage of the single numerical evaluation value, aiming at improving the accuracy of risk factors, a new risk priority method was proposed based on geometric characteristics of triangular fuzzy number and Analytic Hierarchy Process (AHP). This method was established on the basis of the fuzzy description of risk factors from experts, after the risk evaluation system was established. Then the fuzzy description of risk was processed with AHP, and fuzzy weights of risk factors were obtained and calculated it by using the geometric characteristics of triangular fuzzy number. Finally, the detailed ranking of risk factors by severity, probability and detection of risk was obtained. The risk priority of forklift system was processed to analyze the feasibility of this method.
2015-04-14
Technical Paper
2015-01-0213
Vinuchackravarthy Senthamilarasu, Anusha Baskaran, Krishnan Kutty
Abstract In the research field of automotive systems, Advanced Driver Assistance Systems (ADAS) are gaining paramount importance. As the significance for such systems increase, the challenges associated with it also increases. These challenges can arise due to technology, human factors, or due to natural elements (haze, fog, rain etc.). Among these, natural challenges, especially haze, pose a major setback for technologies depending on vision sensors. It is a known fact that the presence of haze in the atmosphere degrades the driver's visibility as well as the information available with the vision based ADAS. To ensure reliability of ADAS in different climatic conditions, it is vital to get back the information of the scene degraded by haze prior to analyzing the images. In this paper, the proposed work addresses this challenge with a novel and faster image preprocessing technique that can enhances the quality of haze affected images both in terms of visibility and visual perception.
Viewing 181 to 210 of 16228

Filter