Display:

Results

Viewing 181 to 210 of 16706
2016-04-05
Technical Paper
2016-01-1490
Hans W. Hauschild, Frank Pintar, Dale Halloway, Mark Meyer, Rodney Rudd
Abstract Oblique crashes to the vehicle front corner may not be characteristic of either frontal or side impacts. This research evaluated occupant response in oblique crashes for a driver, rear adult passenger, and a rear child passenger. Occupant responses and injury potential were evaluated for seating positions as either a far-or near-side occupant. Two crash tests were conducted with a subcompact car. The vehicle’s longitudinal axis was oriented 45 degrees to the direction of travel on a moving platform and pulled into a wall at 56 km/h. Dummies utilized for the seating positions were an adult dummy (50th-percentile-HIII and THOR-Alpha) for the front-left (driver) position, 5th-percentile-female-HIII for the right-rear position, and a 3-year-old HIII for the left-rear position.
2016-04-05
Technical Paper
2016-01-1503
Shotaro Odate, Yukinori Midorikawa, Yuki Yamazaki
Abstract Motorized seatbelt systems that retract seatbelts using motors are being mass-produced by many manufacturers. Scenarios for operation of these systems cover a wide range, including automatic braking for collision avoidance, brake assist and other such pre-crash situations, when the seatbelt is buckled, unbuckled and stored, during sport driving, or under normal conditions. These systems increase the retracting load of the motor using gears, and they can apply a high load in retracting the seatbelt. Previous systems, however, were designed primarily for pre-crash conditions. In previous systems, motor speed rose to higher levels in the normal operating state. The tendency to generate more noise and the application of higher loads on seatbelt retraction therefore became issues. For the present study, these issues were addressed using simulation to optimize the gear ratio.
2016-04-05
Technical Paper
2016-01-1505
William W. Van Arsdell, Paul Weber, Charles Stankewich, Brian Larson, Ryan Hoover, Richard Watson
Abstract This paper investigates the role that load-limiters play with respect to the performance of occupant protection systems, with focus on performance in frontal crashes. Modern occupant protection systems consist of not just the seat belt, but also airbags, interior vehicle surfaces and vehicle structure. Modern seat belts very often incorporate load-limiters as well as pretensioners. Published research has established that load-limiters and pretensioners increase the effectiveness of occupant protection systems. Some have argued that load-limiters with higher deployment thresholds are always better than load-limiters with lower deployment thresholds. Through testing, modeling and analysis, we have investigated this hypothesis, and in this paper we present test and modeling data as well as a discussion to this data and engineering mechanics to explain why this hypothesis is incorrect.
2016-04-05
Technical Paper
2016-01-1521
Masaaki Kuwahara, Tsuyoshi Yasuki, Takeki Tanoue, Ryosuke Chikazawa
Abstract This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
2016-04-05
Technical Paper
2016-01-1522
Zhenwen Wang, Brock Watson
Abstract A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
2016-04-05
Technical Paper
2016-01-1528
Peijun Ji, Qing Zhou
Abstract As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
2016-04-05
Book
This is the electronic format of the Journal.
2016-04-05
Technical Paper
2016-01-1499
Willy Klier, Thomas Lich, Gian Antonio D’Addetta, Heiko Freienstein, Armin Koehler, Bastian Reckziegel, Zerong Yu
Abstract On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
2016-04-05
Technical Paper
2016-01-1464
Jorge Martins, Ricardo Ribeiro, Pedro Neves, F. P. Brito
Abstract The main source for the estimation of stiffness coefficients to be used in accident reconstruction calculations is a very large database of crash-test related information from NHTSA. However, that database includes only car models sold in the USA. Unfortunately, there is no such information for European-only cars besides the raw video recordings of EuroNCAP crash tests. In the present work a methodology is proposed to estimate the stiffness coefficients of European-only models from video images of EuroNCAP crash tests. However, these images are intricate to assess, because the car front is crushed into a deformable barrier at 40% of the front width and usually the bonnet (hood) hides most of the crash damage. Therefore, the top images could not be used straightforward, so a procedure was envisaged to circumvent this difficulty and still allow to calculate stiffness coefficients for European-only cars.
2016-04-05
Technical Paper
2016-01-1463
Jeffrey Aaron Suway, Judson Welcher
Abstract It is extremely important to accurately depict photographs or video taken of a scene at night, when attempting to show how the subject scene appeared. It is widely understood that digital image sensors cannot capture the large dynamic range that can be seen by the human eye. Furthermore, todays commercially available printers, computer monitors, TV’s or other displays cannot reproduce the dynamic range that is captured by the digital cameras. Therefore, care must be taken when presenting a photograph or video while attempting to accurately depict a subject scene. However, there are many parameters that can be altered, while taking a photograph or video, to make a subject scene either too bright or too dark. Similarly, adjustments can be made to a printer or display to make the image appear either too bright or too dark. There have been several published papers and studies dealing with how to properly capture and calibrate photographs and video of a subject scene at night.
2016-04-05
WIP Standard
AS6453A

This SAE Aerospace Standard (AS), identical to ISO 14186, specifies the minimum design and performance criteria and testing methods of fire containment covers (FCCs) used either:

    a. in those cargo compartments of civil transport aircraft where they constitute one means of complying with applicable airworthiness regulations, or
    b. on a voluntary basis, when deemed appropriate by operators to improve fire protection in aircraft cargo compartments where airworthiness regulations do not mandate their use.

2016-04-05
WIP Standard
AS6302A
This specification covers one type of fuel pressure transmitter designated MS28005-7.
2016-04-05
Technical Paper
2016-01-1475
Toby Terpstra, Tilo Voitel, Alireza Hashemian
Abstract Video and photo based photogrammetry software has many applications in the accident reconstruction community including documentation of vehicles and scene evidence. Photogrammetry software has developed in its ease of use, cost, and effectiveness in determining three dimensional data points from two dimensional photographs. Contemporary photogrammetry software packages offer an automated solution capable of generating dense point clouds with millions of 3D data points from multiple images. While alternative modern documentation methods exist, including LiDAR technologies such as 3D scanning, which provide the ability to collect millions of highly accurate points in just a few minutes, the appeal of automated photogrammetry software as a tool for collecting dimensional data is the minimal equipment, equipment costs and ease of use.
2016-04-05
Technical Paper
2016-01-1497
William Bortles, Wayne Biever, Neal Carter, Connor Smith
Abstract This paper presents a comprehensive literature review of original equipment event data recorders (EDR) installed in passenger vehicles, as well as a summary of results from the instrumented validation studies. The authors compiled 187 peer-reviewed studies, textbooks, legal opinions, governmental rulemaking policies, industry publications and presentations pertaining to event data recorders. Of the 187 total references, there were 64 that contained testing data. The authors conducted a validation analysis using data from 27 papers that presented both the EDR and corresponding independent instrumentation values for: Vehicle velocity change (ΔV) Pre-Crash vehicle speed The combined results from these studies highlight unique observations of EDR system testing and demonstrate the observed performance of original equipment event data recorders in passenger vehicles.
2016-04-05
Technical Paper
2016-01-1469
Craig Luker
High image quality video surveillance systems have proliferated making it more common to have collision-related video footage that is suitable for detailed analysis. This analysis begins by using variety of methods to reconstruct a series of positions for the vehicle. If the frame rate is known or can be estimated, then the average travel speed between each of those vehicle positions can be found. Unfortunately with video surveillance systems, the frame rates are typically low and the vehicle may be hidden from view for multiple frames. As a result there are often relatively large time steps between known vehicle positions and the average speed between known positions becomes less useful. The method outlined here determines the instantaneous speed and acceleration time history of the vehicle that was required for it to arrive at the known positions, at the known times.
2016-04-05
Technical Paper
2016-01-1535
Linli Tian, Yunkai Gao
Abstract Based on equivalent static loads method (ESL), a nonlinear dynamic topology optimization is carried out to optimize an automotive body in white (BIW) subjected to representative legislative crash loads, including frontal impact, side barrier impact, roof crush and rear impact. To meet the crashworthiness performances, two evaluation indexes are defined to convert the practical engineering problems into mathematic optimization problems. The strain energy is treated as the stiffness evaluation index of the BIW and the relative displacement is employed as the compliance index of the components and parts.
2016-04-05
Technical Paper
2016-01-1532
Kyoungtaek Kwak, Seungwoo Seo, Randi Potekin, Antoine Blanchard, Alexander Vakakis, Donald McFarland, Lawrence Bergman
Abstract The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Technical Paper
2016-01-0040
Ming Meng, Wilson Khoo
The modern vehicle development is highly dependent on software. The software development plays an extremely important role in vehicle safety and security. In order to ensure software high quality and safety standards, we have investigated the secure software development process and analyzed the works in this area. Based on our analysis, we have identified the similarities and differences between the secure software development process and the existing vehicle development process. We then made suggestions on how to adopt the secure software development process in the overall vehicle development process.
2016-04-05
Technical Paper
2016-01-0046
Markus Ernst, Mario Hirz, Jurgen Fabian
Abstract A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
2016-04-05
Technical Paper
2016-01-0066
Joe Hupcey, Bryan Ramirez
Abstract The number one priority in vehicle security is to harden the root-of-trust; from which everything else - the hardware, firmware, OS, and application layer’s security - is derived. If the root-of-trust can be compromised, then the whole system is vulnerable. In the near future the root-of-trust will effectively be an encryption key - a digital signature for each vehicle - that will be stored in a secure memory element inside all vehicles. In this paper we will show how a mathematical, formal analysis technique can be applied to ensure that this secure storage cannot (A) be read by an unauthorized party or accidentally “leak” to the outputs or (B) be altered, overwritten, or erased by unauthorized entities. We will include a real-world case study from a consumer electronics maker that has successfully used this technology to secure their products from attacks 24/7/365.
2016-04-05
Technical Paper
2016-01-0068
Yoshihiro Ujiie, Takeshi Kishikawa, Tomoyuki Haga, Hideki Matsushima, Tohru Wakabayashi, Masato Tanabe, Yoshihiko Kitamura, Jun Anzai
Abstract Controller area network (CAN) technology is widely adopted in vehicles, but attention has been drawn recently to its lack of security mechanisms. Numerous countermeasures have been proposed, but none can be regarded as a generic solution, in part because all the proposed countermeasures require extensive modifications to existing in-vehicle systems. To arrive at a solution to this problem, we propose a new method of protecting CAN without the need to modify existing systems. In this paper, we explain the principle of our proposed method and the architecture of the electronic control unit (ECU) that implements it. We report the result of our experiments and show its efficacy against typical security threats faced by CAN.
2016-04-05
Technical Paper
2016-01-0063
Karsten Schmidt, Harald Zweck, Udo Dannebaum
Abstract/Short Version Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc.Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices.
2016-04-05
Technical Paper
2016-01-0069
Dae-Kyoo Kim, Eunjee Song, Huafeng Yu
Abstract Cyber security concerns in the automotive industry have been constantly increasing as automobiles are more computerized and networked. AUTOSAR is the standard architecture for automotive software development, addressing various aspects including security. The current version of AUTOSAR is concerned with only cryptography-based security for secure authentication at the communication level. However, there has been an increasing need for authorization security to control access on software resources such as data and services in the automobile. In this paper, we introduce attribute-based access control (ABAC) to AUTOSAR to address authorization in automotive software.
2016-04-05
Technical Paper
2016-01-0114
Chris Schwarz, Timothy Brown, John Lee, John Gaspar, Julie Kang
Abstract Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
2016-04-05
Technical Paper
2016-01-0119
Preeti J. Pillai, Veeraganesh Yalla, Kentaro Oguchi
Abstract This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene.
2016-04-05
Technical Paper
2016-01-0124
Andrew Scott Alden, Brian Mayer, Patrick Mcgowen, Rini Sherony, Hiroyuki Takahashi
Abstract Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
2016-04-05
Technical Paper
2016-01-0150
Felix Pistorius, Andreas Lauber, Johannes Pfau, Alexander Klimm, Juergen Becker
Abstract Various algorithms such as emergency brake or crash warning using V2X communication have been published recently. For such systems hard real-time constraints have to be satisfied. Therefore latency needs to be minimized to keep the message processing delay below a certain threshold. Existing V2X systems based on the IEEE 1609 and SAE J2735 standards implement most message processing in software. This means the latency of these systems strongly depends on the CPU load as well as the number of incoming messages per time. According to safety constraints all messages of nearby vehicles have to be processed, whereby no prediction of the message importance can be given without analyzing the message content. Regarding the aforementioned requirements we propose a novel architecture that optimizes latency to satisfy the hard real-time constraints for V2X messages.
2016-04-05
Technical Paper
2016-01-0147
Toshiya Hirose, Tomohiro Makino, Masanobu Taniguchi, Hidenobu Kubota
Abstract Vehicle to vehicle communication system (V2V) can send and receive the vehicle information by wireless communication, and can use as a safety driving assist for driver. Currently, it is investigated to clarify an appropriate activation timing for collision information, caution and warning in Japan. This study focused on the activation timing of collision information (Provide objective information for safe driving to the driver) on V2V, and investigated an effective activation timing of collision information, and the relationship between the activation timing and the accuracy of the vehicle position. This experiment used Driving Simulator. The experimental scenario is four situations of (1) “Assistance for braking”, (2) “Assistance for accelerating”, (3) “Assistance for right turn” and (4) “Assistance for left turn” in blind intersection. The activation timing of collision information based on TTI (Time To Intersection) and TTC (Time To Collision).
Viewing 181 to 210 of 16706

Filter