Display:

Results

Viewing 151 to 180 of 16220
2015-05-04
WIP Standard
ARP5384
This Recommended Practice provides a guide for specifying general design, performance, and test requirements for Power Drive Units (PDUs) for aerospace flight controls or other aerospace applications.
2015-04-30
WIP Standard
J3098
This SAE Recommended Practice applies to illuminated devices installed on the front exterior of motor vehicles that are intended only to be decorative in nature. This Recommended Practice provides guidelines for the installation, activation, performance, and test procedures of decorative illuminated devices installed on the front exterior of motor vehicles.
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
2015-04-28
Standard
AS567K
This SAE Aerospace Standard (AS) covers devices whose primary function is the retention of fasteners, except for such devices that are integral with the item being retained.
2015-04-24
WIP Standard
J2744
This document presents the requirements for a build-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emission Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuate them out of, the system. This access may be used for the following evaluations: Evaporative System Certifications Canister Loading and Pumping End-of-line Testing System Integrity Service (e.g. OBD MIL on) Leak Location and Repair Verification In-Use Compliance Testing Canister Loading and Purging Inspection/Maintenance Testing System Integrity and Purge Check
2015-04-24
WIP Standard
J211/1
This recommended practice outlines a series of performance recommendations, which concern the whole data channel. These recommendations are not subject to any variation and all of them shall be adhered to by any agency conducting tests to this practice. However, the method of demonstrating compliance with the recommendations is flexible and can be adapted to suit the needs of the particular equipment the agency is using. It is not intended that each recommendation be taken in a literal sense, as necessitating a single test to demonstrate that the recommendation is met. Rather, it is intended that any agency proposing to conduct tests to this practice shall be able to demonstrate that if such a single test could be and were carried out, then their equipment would meet the recommendations. This demonstration shall be undertaken on the basis of reasonable deductions from evidence in their possession, such as the results of partial tests.
2015-04-21
Article
Although 30% of traffic fatalities are alcohol-related, and electronic Driver Alcohol Detection System for Safety has appeal, more targeted approaches to reducing them are being taken by car makers. Programs aimed at reducing teen driver accidents and death were described at the 25th annual World Traffic Safety Symposium during the New York Auto Show.
2015-04-21
WIP Standard
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
2015-04-16
Book
Robert J. Flemming
The effects of inflight atmospheric icing can be devastating to aircraft. Universities and industry have been hard at work to respond to the challenge of maintaining flight safety in all weather conditions. Proposed changes in the regulations for operation in icing conditions are sure to keep this type of research and development at its highest level. This is especially true for the effects of ice crystals in the atmosphere, and for the threat associated with supercooled large drop (SLD) icing. This collection of ten SAE International technical papers brings together vital contributions to the subject. Icing on aircraft surfaces would not be a problem if a material were discovered that prevented the freezing and accretion of supercooled drops. Many options that appeared to have promising icephobic properties have had serious shortfalls in durability.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode “Sensors: Advanced Safety” (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Extreme environment sensors require extreme environment cables that can reliably perform in temperatures up to 2300° F, withstand intense vibration, and have extraordinary strength.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
2015-04-14
Collection
This technical paper collectopm places an emphasis on, but not limited to, innovative ideas to enhance automotive safety with improved material constitutive modeling, analysis method developments, simulation and pre/post processing tools, optimization techniques, crash code developments, finite element model updating, model validation and verification techniques, dummies and occupants, restraint systems, passive safety as well as lightweight material applications and designs.
2015-04-14
Collection
Active Safety and Driver assistance systems are gaining importance as many passive safety systems have already been found to have yielded significant safety benefits that are possible from the deployment of those systems in the fleet. Similar success will much depend upon how fast these systems proliferate the entire passenger vehicle fleet. It will also depend on the deployment strategies used by the industry and the government as well as consumer acceptance and market demand for these systems. Additionally, opportunities exist to use the information gained from the various onboard sensors and vision systems in active safety systems for improving the effectiveness of today’s passive safety systems such as seat belts, airbags, and post-crash safety systems even further by the integration of active and passive safety systems.
2015-04-14
Collection
The Occupant Restraints technical paper collection highlights papers that document new research on the restraint topics of airbags, seat belts, inflatable bolsters/seat belts, knee bolsters, Child Restraint Systems (CRS) and other related areas. These papers could include several of the following: technology description, occupant performance considerations, field data studies, development/validation methodology / results, CAE/Finite Element methods/results, packaging, and implementation / performance challenges.
2015-04-14
Collection
The pedestrian and cyclist safety session focuses on research and development efforts aimed at protecting pedestrians and cyclists in the event of vehicle impact. Papers covern injury biomechanics, vehicle design, dummy and impactor development, computational modeling, regulations and consumer assessment testing, active safety and collision avoidance.
2015-04-14
Technical Paper
2015-01-1700
John D. Bullough
Abstract Warning lights and beacons on service vehicles such as maintenance trucks, tow trucks, utility service vehicles and delivery vehicles are an important line of defense for the workers who operate them. These flashing lights can also contribute to visual chaos making it difficult to navigate through a work zone location. Research on the flashing configuration and spatial and temporal coordination of warning lights that could adapt to ambient conditions and situations is described, leading to recommendations for preliminary performance specifications
2015-04-14
Technical Paper
2015-01-1705
Miguel Hurtado, Amine Taleb-Bendiab, Julien Moizard, Patrice M. Reilhac, Heinz Mattern
Abstract Current market trend indicates an increased interest in replacing mirrors by camera monitor systems (CMS) to reduce CO2 emissions and to improve visibility of surrounding environment to the driver. A CMS is an advanced system composed of an electronic imager, a display, and an intelligent electronic control unit intended to provide at least the same level of functionality of legally prescribed mirrors. A CMS must also take into consideration several factors in the designed system to satisfy an overall system magnification and system resolution. Some factors pertain to the camera, and display inside the cockpit, but some other are related to the physical constraints of the human operator, i.e. visual acuity, height, etc. In this paper, we demonstrate that there exists a fundamental nonlinear equation for a given CMS encompassing factors that influence the performance of the system.
2015-04-14
Technical Paper
2015-01-1704
Dee Kivett, John Smith
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
2015-04-14
Technical Paper
2015-01-1703
John D. Bullough
Abstract Assessing the safety impacts of vehicle forward lighting is a challenge because crash data do not always contain details necessary to ascertain the role, if any, of lighting in crashes. The present paper describes several approaches to evaluating the safety impacts of lighting using naturalistic driving data. Driving behavioral data and descriptive narratives of crashes and near-miss incidents might provide new opportunities to understand how forward lighting improves traffic safety.
2015-04-14
Technical Paper
2015-01-1475
Alan F. Asay, Jarrod Carter, James Funk, Gregory Stephens
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
2015-04-14
Technical Paper
2015-01-1476
P Selvakumar, Arun Mahajan, R Murasolimaran, C Elango
Abstract Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
2015-04-14
Technical Paper
2015-01-1473
Kalu Uduma, Dipu Purushothaman, Darshan Subhash Pawargi, Sukhbir Bilkhu, Brian Beaudet
Abstract NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
2015-04-14
Technical Paper
2015-01-1479
Adria Ferrer, Eduard Infantes
Abstract The introduction of the new NHTSA (National Highway Traffic Safety Administration) oblique test configuration presents a new and critical load case that manufacturers are on the way to solving. Towards providing the best tools for passive safety development, this paper presents the work carried out to enable the analysis of the loads transmitted to the barrier in this kind of test. These data enable the identification of the elements of the vehicle that take part in the absorption of energy during the crash and are a valuable tool to improving the safety of vehicles by comparing the loads transmitted to the barrier in oblique tests. To record these data, a load cell wall system located between the deformable barrier and the trolley was installed. To assess the barrier design, one oblique test with the RMDB barrier was carried out. The deformable barrier for the oblique test is instrumented with 9 columns of 3 and 4 load cells with a total of 32 x-axial load cells.
2015-04-14
Technical Paper
2015-01-1477
Robert Larson, Jeffrey Croteau, Cleve Bare, John Zolock, Daniel Peterson, Jason Skiera, Jason R. Kerrigan, Mark D. Clauser
Abstract Extensive testing has been conducted to evaluate both the dynamic response of vehicle structures and occupant protection systems in rollover collisions though the use of Anthropomorphic Test Devices (ATDs). Rollover test methods that utilize a fixture to initiate the rollover event include the SAE2114 dolly, inverted drop tests, accelerating vehicle body buck on a decelerating sled, ramp-induced rollovers, and Controlled Rollover Impact System (CRIS) Tests. More recently, programmable steering controllers have been used with sedans, vans, pickup trucks, and SUVs to induce a rollover, primarily for studying the vehicle kinematics for accident reconstruction applications. The goal of this study was to create a prototypical rollover crash test for the study of vehicle dynamics and occupant injury risk where the rollover is initiated by a steering input over realistic terrain without the constraints of previously used test methods.
2015-04-14
Technical Paper
2015-01-1483
Anindya Deb, N Shivakumar, Clifford Chou
Abstract Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
2015-04-14
Journal Article
2015-01-1481
Myles Wilson, David Aylor, David Zuby, Joseph Nolan
Abstract The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
2015-04-14
Technical Paper
2015-01-1487
Andreas Teibinger, Harald Marbler-Gores, Harald Schluder, Veit Conrad, Hermann Steffan, Josef Schmidauer
Abstract Structural component testing is essential for the development process to have an early knowledge of the real world behaviour of critical structural components in crash load cases. The objective of this work is to show the development for a self-sufficient structural component test bench, which can be used for different side impact crash load cases and can reflect the dynamic behaviour, which current approaches are not able. An existing basic system is used, which includes pneumatic cylinders with a controlled hydraulic brake and was developed for non-structural deformable applications only (mainly occupant assessments). The system is extended with a force-distance control. The method contains the analysis of a whole vehicle FEM simulation to develop a methodology for controlled force transmission with the pneumatic cylinders for a structural component test bench.
Viewing 151 to 180 of 16220

Filter